629 resultados para Alternans, Hypocacemia, Bifurcations
Resumo:
This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.
Resumo:
Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.
Resumo:
We compare and contrast the entanglement in the ground state of two Jahn-Teller models. The Exbeta system models the coupling of a two-level electronic system, or qubit, to a single-oscillator mode, while the Exepsilon models the qubit coupled to two independent, degenerate oscillator modes. In the absence of a transverse magnetic field applied to the qubit, both systems exhibit a degenerate ground state. Whereas there always exists a completely separable ground state in the Exbeta system, the ground states of the Exepsilon model always exhibit entanglement. For the Exbeta case we aim to clarify results from previous work, alluding to a link between the ground-state entanglement characteristics and a bifurcation of a fixed point in the classical analog. In the Exepsilon case we make use of an ansatz for the ground state. We compare this ansatz to exact numerical calculations and use it to investigate how the entanglement is shared between the three system degrees of freedom.
Resumo:
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state-the ground state-achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.
Resumo:
We present the first experimental observation of several bifurcations in a controllable non-linear Hamiltonian system. Dynamics of cold atoms are used to test predictions of non-linear, non-dissipative Hamiltonian dynamics.
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The main purpose of this work was to study population dynamic discrete models in which the growth of the population is described by generalized von Bertalanffy's functions, with an adjustment or correction factor of polynomial type. The consideration of this correction factor is made with the aim to introduce the Allee effect. To the class of generalized von Bertalanffy's functions is identified and characterized subclasses of strong and weak Allee's functions and functions with no Allee effect. This classification is founded on the concepts of strong and weak Allee's effects to population growth rates associated. A complete description of the dynamic behavior is given, where we provide necessary conditions for the occurrence of unconditional and essential extinction types. The bifurcation structures of the parameter plane are analyzed regarding the evolution of the Allee limit with the aim to understand how the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is realized. To generalized von Bertalanffy's functions with strong and weak Allee effects is identified an Allee's effect region, to which is associated the concepts of chaotic semistability curve and Allee's bifurcation point. We verified that under some sufficient conditions, generalized von Bertalanffy's functions have a particular bifurcation structure: the big bang bifurcations of the so-called box-within-a-box type. To this family of maps, the Allee bifurcation points and the big bang bifurcation points are characterized by the symmetric of Allee's limit and by a null intrinsic growth rate. The present paper is also a significant contribution in the framework of the big bang bifurcation analysis for continuous 1D maps and unveil their relationship with the explosion birth and the extinction phenomena.
Resumo:
This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincare sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincare mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents. Copyright (C) 2009 F. D. Marques and R. M. G. Vasconcellos.
Resumo:
The dynamics of a dissipative vibro-impact system called impact-pair is investigated. This system is similar to Fermi-Ulam accelerator model and consists of an oscillating one-dimensional box containing a point mass moving freely between successive inelastic collisions with the rigid walls of the box. In our numerical simulations, we observed multistable regimes, for which the corresponding basins of attraction present a quite complicated structure with smooth boundary. In addition, we characterize the system in a two-dimensional parameter space by using the largest Lyapunov exponents, identifying self-similar periodic sets. Copyright (C) 2009 Silvio L.T. de Souza et al.
Resumo:
We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.
Resumo:
A new circuit configuration, linearly conjugate to the standard Chua`s circuit, is presented. Its distinctive feature is that the equations now admit an additional parameter, which controls the dissipation in the network connected to the Chua diode. In the limiting case we obtain the simplest chaotic circuit, consisting of a piecewise-linear resistor and three lossless elements.
Resumo:
Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.