129 resultados para Alpheus armillatus
Resumo:
1
Resumo:
10
Resumo:
13
Resumo:
5
Resumo:
3, Text
Resumo:
The author studied, the horizontal and vertical distribution of most common part of the flora and fauna of the bay of Guanabara at Rio de Janeiro. In this paper the eulittoral, poly, meso and oligohaline regions were localised and studied; and the first chart of its distribution was presented (fig. 2). The salinity of superficial waters was established through determinations based on 30 trips inside the buy for collecting biological materials. Some often 409 determinations which were previous reported together with the present ones served for the eleboration of a salinity map of the bay of Guanabara (fig. 1). This map of fig. 2 shows the geographic locations of the water regions. EULITTORAL WATER REGIME Fig. 3 shows the diagram scheme of fauna and flora of this regime. Sea water salinity 34/1.000, density mean 1.027, transparent greenish waters, sea coast with moderate bursting waves. Limpid sea shore with white sand, gneiss with the big barnacle Tetraclita squamosa var. stalactifera (Lam. Pilsbry. Vertical distributions: barna¬cles layers with a green region in which are present the oyster Ostrea pa-rasitica L., the barnacles Tetraclita, Chthamalus, Balanus tintinnabulum var. tintinnabulum (L.) e var. antillensis Pilsbry in connection with several mollusca and the sea beatle Isopoda Lygia sp. Covered by water and exposed to air by the tidal ritms, there is a stratum of brown animals that is the layer of mussels Mytilus perna L., with others brown and chestnut animals : the Crustacea Pachygrapsus, the little crab Porcellana sp., the stone crab Me-nippe nodifrons Stimpson, the sea stars Echinaster brasiliensis (Mull. & Tr.), Astropecten sp. and the sea anemones Actinia sp. Underneath and never visible there is a subtidal region with green tubular algae of genus Codium and amidst its bunches the sea urchin Lycthchinus variegatus (Agass.) walks and more deeply there are numerous sand-dollars Encope emarginata (Leske). The microplancton of this regime is Ceratiumplancton. POLYHALINE WATER REGIMB Water almost sea water, but directly influenced by continental lands, with rock salts dissolved and in suspension. Salinity: 33 to 32/1.000. This waters endure the actions of the popular nicknamed «water of the hill» (as the waters of mesohaline and oligohaline regimes), becoming suddenly reddish during several hours. That pheno¬menon returns several times in the year and come with great mortality of fishes. In these waters, according to Dr. J. G. FARIA there are species of Protozoa : Peridinea, the Glenoidinium trochoideum St., followed by its satellites which he thinks that they are able to secret toxical substances which can slaughter some species of fishes. In these «waters of the hill» was found a species of Copepoda the Charlesia darwini. In August 1946 the west shore of the Guanabara was plenty of killed fishes occupying a area of 8 feet large by 3 nautical miles of lenght. The enclosure for catching fishes in the rivers mouthes presents in these periods mass dead fishes. The phenomenon of «waters of the hill» appears with the first rains after a period of long dryness. MESOHALINE WATER REGIME Fig. 4 shows the the diagramm scheme. Salt or brackish water from 30 to 17/1.000 salinity, sometimes until 10/1.000. Turbid waters with mud in suspension, chestnut, claveyous waters; shore dirty black mud without waving bursting; the waters are warmer and shorner than those of the polihaline regime. Mangrove shore with the mangrove trees : Rhizophora mangle L., Avicennia sp., Laguncularia sp., and the »cotton tree of sea» Hibiscus sp. Fauna: the great land crab «guaimú» Cardisoma guanhumi Latr., ashore in dry firm land. There is the real land crab Ucides cordatus (L.) in wetting mud and in neigh¬ bourhood of the burrows of the fiddler-crabs of genus Uca. On stones and in the roots of the Rhizophora inhabits the brightly colored mangrove-tree-crab («aratu» Portuguese nickname) Goniopsis cruentata (Latreille) and the sparingly the big oyster Ostrea rhizophorae Guild. Lower is the region of barnacles Balanus amphitrite var. communis Darwin and var. niveus Darwin; Balanus tintinnabulum var. tintinnabulum (L.) doesn't grow in this brackish water; lower is the region of Pelecipoda with prepollency of Venus and Cytherea shell-fishes and the Panopeus mud crab; there are the sea lettuce Ulva and the Gastreropod Cerithium. The Paguridae Clibanarius which lives in the empty shells of Gasteropod molluscs, and the sessile ascidians Tethium plicatum (Lesuer) appears in some seasons. In the bottom there is a black argillous mud where the «one landed shrimps» Alpheus sp. is hidden. OLIGOHALINE WATER REGIME The salinity is lower than 10/1.000. average 8/1.000. There are no barnacles and no sea-beetles Isopods of genus Lygia; on the hay of the shore there are several graminea. This brackish water pervades by mouthes of rivers and penetrates until about 3 kilometers river above. While there is some salt dissolved in water, there are some mud crabs of the genus Uca, Sesarma, Metasesarma and Chasmagnatus. The presence of floating green plants coming from the rivers in the waters of a region indicated the oligohaline waters, with low salt content because when the average of NaCl increases above 8/1.000 these plants die and become rusty colored.
Resumo:
Ophichthus Rufus is a Mediterranean benthic fish with nocturnal habits. It lives in sand or mud bottoms at depths between 50 and 150m. Until now, nothing about its feeding habits was known. Stomach contents of 689 individuals, collected between 1985 and 1987, were analysed. The diet is basically composed of benthic organisms, among which the decapods processa canaliculata and Alpheus glaber and the teleost fish Callionymus maculatus are prominent. Young of both sexes and adult males have a euryphagic carnivorous diet, whereas adult females are closer to a stenophagic piscivorous diet
Resumo:
No estuário de Marapanim-PA, pouco conhecimento existe sobre larvas de camarão, organismos de elevada importância ecológica e alguns de grande valor econômico. Com o objetivo de estudar a composição específica, a densidade e a distribuição espaço-temporal destas larvas no estuário em relação aos períodos do ano (seco, transição e chuvoso), zonas do estuário (1, 2 e 3), locais de coleta (A1, A2, A3, B1, B2 e B3) e perfis (A e B), foram realizadas coletas mensais de agosto/06 a julho/07. As amostras biológicas foram obtidas através de arrastos horizontais em cada local de coleta à aproximadamente 0,5 m da superfície da coluna d’água, com auxílio de uma rede de plâncton cônica (abertura de 0,5 m e malha de 200 μm). Também foram colhidos dados abióticos como, temperatura, salinidade e pH da água. No estuário de Marapanim-PA foram encontradas 4.644 larvas de camarão, compreendendo as infra-ordens Penaeidea e Caridea. Dentre as espécies e/ou famílias encontradas, as mais abundantes foram Alpheus estuariensis (302,59 larvas/m3), Palaemonidae (97,05 larvas/m3) e Sergestidae no estádio de elaphocaris (90,47 larvas/m3) , sendo A. estuariensis a mais frequente (76,39%). O período seco apresentou maior densidade, diversidade e riqueza de larvas de camarão. Na análise de agrupamento da densidade mensal das larvas houve a formação de três grupos, ao nível de similaridade de 65%, nos quais A. estuariensis foi dominante, além de ser a espécie que mais contribuiu para a similaridade dentro destes. A diferença entre agrupamentos se deu principalmente devido à densidade das larvas de Sergestidae, Palaemonidae e Xiphopenaeus kroyeri. Entre os fatores abióticos estudados, a salinidade foi o fator que mais influenciou a distribuição espaço-temporal das larvas de camarão no estuário de Marapanim-PA, região importante para o recrutamento dos estádios iniciais do ciclo de vida de algumas espécies.
Resumo:
O presente trabalho investigou a ocupação e a correlação da abundância de camarões em relação às variáveis ambientais nos diferentes habitats (manguezal, marisma e afloramento rochoso) em um estuário amazônico. As coletas foram realizadas em agosto e novembro de 2009, na maré baixa de sizígia na praia do Areuá, situada na RESEX Mãe Grande de Curuçá, Pará, totalizando 20 poças. Em cada ambiente foram registrados os fatores físicoquímicos (pH, salinidade e temperatura) e mensuradas a área (m²) e o volume (m³) de cada poça através da técnica de batimetria. A média do pH, salinidade, temperatura, área e volume das poças-de-maré foram 8,75 (± 0,8 desvio padrão) 35,45 (± 3), 29,49 °C (± 2,32), 27,41 m² (± 41,18) e 5,19 m³ (± 8,01), respectivamente. Foi capturado um total de 4.871 indivíduos, distribuídos em três famílias e quatro espécies: Farfantepenaeus subtilis (marinha) a mais frequente (98,36%), seguida de Alpheus pontederiae (0,76%) (estuarina), Macrobrachium surinamicum (0,45%) e Macrobrachium amazonicum (0,43%) predominantemente dulcícolas. As espécies F. subtilis e A. pontederiae ocorreram nos três habitats, enquanto que M. surinamicum ocorreu no afloramento rochoso e marisma e M. amazonicum somente no marisma. O pH e a temperatura foram os descritores ambientais mais importantes que afetaram significativamente a densidade e a biomassa dos camarões.
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.
Resumo:
Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.
Resumo:
Mode of access: Internet.
Resumo:
Cover-title.
Resumo:
"Bibliographical note": p. 205-209.