917 resultados para Allograft-rejection
Resumo:
The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.
Resumo:
Abnormal production of interferon alpha (IFN-a) has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1) and 261-410 (P2) of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC) in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3)pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM). On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.
Resumo:
FTY720 is a new and effective immunosuppressive agent, which produces peripheral blood lymphopenia through a lymphocyte homing effect. We investigated the relationship between the dose of FTY720 or blood concentration (pharmacokinetics, PK) and peripheral lymphopenia (pharmacodynamics, PD) in 23 kidney transplant recipients randomized to receive FTY720 (0.25-2.5 mg/day) or mofetil mycophenolate (2 mg/day) in combination with cyclosporine and steroids. FTY720 dose, blood concentrations and lymphocyte counts were determined weekly before and 4 to 12 weeks after transplantation. The effect of PD was calculated as the absolute lymphocyte count or its reductions. PK/PD modeling was used to find the best-fit model. Mean FTY720 concentrations were 0.36 ± 0.05 (0.25 mg), 0.73 ± 0.12 (0.5 mg), 3.26 ± 0.51 (1 mg), and 7.15 ± 1.41 ng/ml (2.5 mg) between 4 and 12 weeks after transplantation. FTY720 PK was linear with dose (r² = 0.98) and showed low inter- and intra-individual variability. FTY720 produced a dose-dependent increase in mean percent reduction of peripheral lymphocyte counts (38 vs 42 vs 56 vs 77, P < 0.01, respectively). The simple Emax model [E = (Emax * C)/(C + EC50)] was the best-fit PK/PD modeling for FTY720 dose (Emax = 87.8 ± 5.3% and ED50 = 0.48 ± 0.08 mg, r² = 0.94) or concentration (Emax = 78.3 ± 2.9% and EC50 = 0.59 ± 0.09 ng/ml, r² = 0.89) vs effect (% reduction in peripheral lymphocytes). FTY720 PK/PD is dose dependent and follows an Emax model (EC50 = 0.5 mg or 0.6 ng/ml). Using lymphopenia as an FTY720 PD surrogate marker, high % reductions (~80%) in peripheral lymphocytes are required to achieve best efficacy to prevent acute allograft rejection.
Resumo:
Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Studentt-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.
Resumo:
Introducción: El trasplante hepático es la terapia de elección para los pacientes con enfermedad hepática terminal, logrando mejorar su expectativa y calidad de vida, de acuerdo a estudios realizados en otros países. En la Fundación Cardioinfantil – Instituto de Cardiología (FCI-IC) se han realizado 332 trasplantes hepáticos hasta el 2014, pero no se conoce la supervivencia y los factores pronósticos propios de los pacientes intervenidos. Objetivo Principal: Estimar la supervivencia a 1, 3 y 5 años e identificar los principales factores pronósticos de los pacientes a quienes se les realizó trasplante hepático en el periodo 2005-2013 en la FCI-IC. Método: Estudio observacional y retrospectivo, basado en revisión de historias clínicas de los pacientes adultos a quienes se les realizó trasplante hepático en el periodo 2005-2013 en la FCI-IC. Resultados: La supervivencia al año fue de 90.91% (IC95% 86.40-93.98), a los 3 años 83.64% (IC95% 77.89-88.01) y a los 5 años de 79.18% (IC95% 72.54-84.39). Los principales factores pronósticos fueron el antecedente de ascitis (HR 2.449, IC 1.252 – 4.792), la edad del donante (HR 1.040, IC 1.009 – 1.071) y el receptor (HR 1.037, IC 1.014 – 1.060). Se encontró una mayor supervivencia en los pacientes con cirrosis alcohólica (HR 0.099, IC 0.021 – 0.467). Conclusiones: El estudio mostró una supervivencia mayor a la reportada en estudios realizados en Estados Unidos (67.4-73.0% a los 5 años) y España (73,3% a los 3 años) y similar a la de Chile (80.0% a los 5 años). Cabe resaltar que estos estudios incluyeron series más grandes de pacientes.
Resumo:
Introduction: TLR-4 has also been identified as a receptor for endogenous alarmins, which are increased post transplantation. TLR-4 has also been associated with a polymorphism that could impact graft outcome. Objective: To assess the expression of TLR-4 in kidney transplant patients carrying or not a polymorphism. Methods: TLR-4 polymorphism (A299G/T399I) was studied in 200 renal transplant patients. Healthy volunteers were also enrolled as control group. The polymorphism analysis was performed using restriction enzymes technique (RFLP). Functionality of TLR-4 polymorphism was assessed in samples from controls by quantification of TNF-alpha after LPS stimulus. TLR-4 and -2 expressions were also analyzed by flow cytometry. Results: TLR-4 polymorphism was present in 8.5% of renal transplant patients. This polymorphism was associated with impairment in TNF-alpha secretion. In general, in renal transplant patients, TLR-4 expression in monocytes and in neutrophils was lower than in health volunteers. TLR-2 and TLR-4 expressions in healthy volunteers with A299G/T399I TLR-4 polymorphism was higher than in wild-type genotype healthy volunteers (p<0.01 and p<0.05, respectively), and also higher than A299G/T399I TLR-4 polymorphism renal transplant patients (p<0.05). TLR-2 expression on neutrophils in wild-type genotype renal transplant patients was higher compared to wild-type genotype healthy volunteers, and was also higher in relation to A299G/T399I kidney transplanted patients (p<0.01). Conclusion: Stable renal transplant patients with TLR-4 polymorphism have a lower expression of TLR-4 and TLR-2 receptors in peripheral mononuclear cells, which ultimately indicate a less responsiveness for alarmins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction. Tricuspid regurgitation (TR) is the most commonly valvular dysfunction found after heart transplantation (HTx). It may be related to endomyocardial biopsy (EMB) performed for allograft rejection surveillance. Objective. This investigation evaluated the presence of tricuspid valve tissue fragments obtained during routine EMB performed after HTx and its possible effect on short-term and long-term hemodynamic status. Method. This single-center review included prospectively collected and retrospectively analyzed data. From 1985 to 2010, 417 patients underwent 3550 EMB after HTx. All myocardial specimens were reviewed to identify the presence of tricuspid valve tissue by 2 observers initially and in doubtful cases by a third observer. The echocardiographic and hemodynamic parameters were only considered for valvular functional damage analysis in cases of tricuspid tissue inadvertently removed during EMB. Results. The 417 HTx patients to 3550 EMB, including 17,550 myocardial specimens. Tricuspid valve tissue was observed in 12 (2.9%) patients corresponding to 0.07% of the removed fragments. The echocardiographic and hemodynamic parameters of these patients before versus after the biopsy showed increased TR in 2 cases (2/12; 16.7%) quantified as moderate without progression in the long term. Only the right atrial pressure showed a significant increase (P = .0420) after tricuspid injury; however, the worsening of the functional class was not significant enough in any of the subjects. Thus, surgical intervention was not required. Conclusions. Histological evidence of chordal tissue in EMB specimens is a real-world problem of relatively low frequency. Traumatic tricuspid valve injury due to EMB rarely leads to severe valvular regurgitation; only a minority of patients develop significant clinical symptoms. Hemodynamic and echocardiographic alterations are also less often observed in most patients.
Resumo:
Pancreatic islet transplantation represents a fascinating procedure that, at the moment, can be considered as alternative to standard insulin treatment or pancreas transplantation only for selected categories of patients with type 1 diabetes mellitus. Among the factors responsible for leading to poor islet engraftment, hypoxia plays an important role. Mesenchymal stem cells (MSCs) were recently used in animal models of islet transplantation not only to reduce allograft rejection, but also to promote revascularization. Currently adipose tissue represents a novel and good source of MSCs. Moreover, the capability of adipose-derived stem cells (ASCs) to improve islet graft revascularization was recently reported after hybrid transplantation in mice. Within this context, we have previously shown that hyaluronan esters of butyric and retinoic acids can significantly enhance the rescuing potential of human MSCs. Here we evaluated whether ex vivo preconditioning of human ASCs (hASCs) with a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids may result in optimization of graft revascularization after islet/stem cell intrahepatic cotransplantation in syngeneic diabetic rats. We demonstrated that hASCs exposed to the mixture of molecules are able to increase the secretion of vascular endothelial growth factor (VEGF), as well as the transcription of angiogenic genes, including VEGF, KDR (kinase insert domain receptor), and hepatocyte growth factor (HGF). Rats transplanted with islets cocultured with preconditioned hASCs exhibited a better glycemic control than rats transplanted with an equal volume of islets and control hASCs. Cotransplantation with preconditioned hASCs was also associated with enhanced islet revascularization in vivo, as highlighted by graft morphological analysis. The observed increase in islet graft revascularization and function suggests that our method of stem cell preconditioning may represent a novel strategy to remarkably improve the efficacy of islets-hMSCs cotransplantation.
Resumo:
The central issue in organ transplantation remains suppression of allograft rejection. Immunosuppression can be achieved by depleting lymphocytes, diverting lymphocyte traffic, or blocking lymphocyte response pathways. Immunosuppressive drugs include small-molecule drugs, depleting and nondepleting protein drugs (polyclonal and monoclonal antibodies), fusion proteins, intravenous immune globulin, and glucocorticoids. Small-molecule immunosuppressive agents include calcineurin-inhibitors (cyclosporine, tacrolimus), Target-of-Rapamycin Inhibitors (Sirolimus, Everolimus), inhibitors of nucleotide synthesis and azathioprine. The review covers the mode of action of these drugs with a special focus on belatacept, a new promising fusion protein. Different immuo-suppressive strategies mean also different safety profiles. Common side effects include the consequences of diminished immuno- response, i.e. infections and cancer (mainly involving the skin). Toxic side effects of immunosuppressive drugs range in a wide spectrum that involves almost every organ. The major interest of this toxic effects is the cardiovascular tolerance (with large differences from drug to drug), that are discussed seperately. The calcineurin- and mTOR-inhibitors are both metabolized by the CYP450 3A4 enzyme, which is also involved in the metabolism of many other drugs. The review discusses the most important interactions that in- or decreases the through level of these drugs.
Resumo:
Farnesyltransferase Inhibitors (FTIs) are a class of drugs known to prevent the farnesylation and subsequent membrane attachment of a number of intracellular proteins. In various studies, the administration of FTIs has been found to play a role in the activation and development of T-cells in the immune system. FTIs have also been found to act as immunomodulators in delaying MHC-II mismatched skin allografts in mice. This study focuses on the effect of the FTI, ABT-100, on the differentiation and cytokine secretion of Th1 and Th2 helper T-cells in BALB/C mice to better understand which immune responses are targeted by FTIs. Splenocytes were isolated from BALB/C mice, skewed towards either a Th1 or a Th2 phenotype with the addition of cytokines, and treated with various concentrations of ABT-100. Splenocytes were also isolated and immediately cultured in the presence of ABT-100 to observe differentiation trends of helper T-cells. Cytokine production was measured using intracytoplasmic flow cytometry analysis. I found that ABT-100 treatment does not block Th1 or Th2 cell differentiation. Instead, ABT-100 treatment appears to affect cytokine production from effector T-cells. I found that ABT-100 causes a decrease in IFN-¿ production in mature Th1 cells yet does not affect IL-4 production in mature Th2 cells. This decrease in cytokine production as a result of ABT-100 treatments provides a potential mechanism for how ABT-100 works to delay MHC-II mismatched allograft rejection.
Resumo:
Previous studies demonstrated that impaired left ventricular (LV) relaxation in cardiac allografts limits exercise tolerance post-transplant despite preserved systolic ejection fraction (EF). This study tested in human cardiac allografts whether the isovolumic relaxation time (IVRT), which provides the basis for most of diastolic LV filling, relates with gene expression of regulatory proteins of calcium homeostasis or cardiac matrix proteins. Gene expression was studied in 31 heart transplant recipients (25 male, 6 female) 13-83 months post-transplant with LVEF >50%, LV end-diastolic pressure <20 mmHg, normal LV mass index and without allograft rejection or significant cardiac pathology. IVRT related with the other diastolic parameters e-wave velocity (r = -0.46; p = 0.01), e/a-wave ratio (r = -0.5; p < 0.01) but not with heart frequency (r = -0.16; p = 0.4). No relation of IVRT was observed for immunosuppression, mean rejection grade or other medication. IVRT was not related with gene expression of desmin, collagen I, phospholamban, the Na+-Ca2+ exchanger, the ryanodine receptor or interstitial fibrosis but correlated inversely with SERCA2a (r = -0.48; p = 0.02). Prolonged IVRT is associated with decreased SERCA2a expression in cardiac allografts without significant other pathology. Similar observations in non-transplanted patients with diastolic failure suggest that decreased SERCA2a expression is an important common pathomechanism.
Resumo:
Chronic allograft nephropathy, including chronic rejection, remains one of the major causes of renal allograft failure. Amongst other mediators, metzincins, such as matrix metalloproteinases (MMP), direct extracellular matrix metabolism and cell proliferation. Thus, we hypothesized, that these proteolytic enzymes are differentially regulated in chronic renal transplant rejection in rats and in human renal allograft nephropathy. Our studies demonstrated on the experimental level and in humans an overall up-regulation of MMP, tissue inhibitors of metalloproteinases (TIMP) and related enzymes as a result of rejection processes. Thus, metzincins may represent novel markers and therapeutic targets with respect to renal allograft rejection.