999 resultados para Alkenone, d13C
Resumo:
Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
Total organic carbon (TOC) and calcium carbonate (CaCO3) concentrations were determined for 304 samples, and biomarkers were analyzed for 101 samples from Core 167-1016C-1H. TOC varies between 1% and 2%, and CaCO3 is typically 1%-4%, with peaks reaching 14%. Paleotemperature estimated from Uk'37 varies from 8.5° to 17.5°C. The Uk'37 variation implies that Core 167-1016C-1H covers oxygen isotope Stages 1-6. Peaks of diatom-derived C25:1 HBI alkene concentrations occur during warming intervals, suggesting intensified upwelling during deglaciation. The concentrations of haptophyte-derived alkenones and diatom-derived C25:1 HBI alkene vary out of phase, which presumably resulted from the changes in the mode of nutrient supply to surface mixed layer. Maximal CaCO3 contents (>10%) were observed in both warming and cooling intervals. The peak in cooling interval relates to an alkenone maximum, whereas the peaks in warming intervals do not. This implies that carbonate production is not the only factor controlling carbonate compensation depth at this site, and it suggests considering the changes in North Pacific deep-water chemistry. Petroleum-type compounds are present in Site 1016 sediments. Their concentrations are maximized in the warming intervals that correspond to the timing of destruction of a huge tar mound off Point Conception. The tarry material was presumably transported by the Arguello Fan system to Site 1016.
Resumo:
The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (d15N) and alkenone-derived sea surface temperature (SST) values. This ?0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.
Resumo:
Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced d13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
Resumo:
We present a 15 kyr sea surface temperature (SST) record for a high sedimentation rate core (KNR51-29GGC) from the Feni Drift off of Ireland, based on an organic geochemical technique for paleotemperature estimation, U37 K'. We compare the U37 K' temperature record to planktonic foraminiferal delta18O and foraminiferal assemblage SST estimates from the same sample horizons. U37 K' gives SST estimates of 13°C for the early deglacial and 18°C for the Holocene and Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. As in nearby core V23-81, we find Ash Zone 1, the Younger Dryas increase in Neogloboquadrina pachyderma sinistral abundance, and maximum abundance of this species during glaciation. N. pachyderma dextral oxygen isotopic analyses have a late glacial to interglacial range of 1.5 per mil. A reduction of about 1 per mil in delta18O occurred at about 12 ka, whereas U37 K' and the foraminiferal fauna indicate a 2°C warming. This implies a 0.9 per mil salinity effect on delta18O which we attribute to meltwater freshening. All three parameters indicate cooling during the Younger Dryas. U37 K' SST estimates show that the major shift from deglacial to interglacial temperatures occurred after the Younger Dryas in termination 1b, in contrast to the assemblage data, which show this jump in SST at the end of the glaciation during termination Ia. Differences between the two SST estimators, which may result from their different (floral versus faunal) sources, are more pronounced between transitions Ia and Ib. This may reflect different habitats under the unusual sea surface conditions of the deglaciation.