1000 resultados para Alkenone, C37:4
Resumo:
Records of total organic carbon (TOC) and C37 alkenones were used as indicators for past primary productivity in the western and eastern Arabian Sea. Data from GeoB 3005, an open ocean site in the western Arabian Sea upwelling area, are compared with similar records of GeoB 3007 from the Owen Ridge, Ocean Drilling Program (ODP) Site 723 from the continental margin off Oman and MD 900963 from the eastern Arabian Sea. TOC/C37 alkenone records together with other proxies used to reconstruct upwelling intensity, indicate periods of high productivity in tune with precessional forcing all over the Arabian Sea. Based on their phase-relationship to variations in boreal summer insolation they can be divided into three groups. In the western Arabian Sea the precession-related phasing is different between productivity proxies and those for summer monsoon wind strength and upwelling intensity. TOC and C37 alkenone records from the western Arabian Sea lag the other monsoonal indicators by about 5 kyr, but lead productivity indicators from the eastern Arabian Sea by 3 kyr. Based on the differences in phase relationships associated with the precessional cycling between productivity and monsoonal proxies in the western Arabian Sea it is proposed that the TOC/C37 alkenone signal in the western Arabian Sea document a combined signal of moderate SW monsoon winds and of strengthened and prolonged NE monsoon winds. In the eastern Arabian Sea the phasing hints to coincidence between maximum productivity and stronger NE monsoon winds associated with precession-related maxima in ice volume. In contrast, variations in paleoproductivity at site GeoB 3007 from the Owen Ridge indicate productivity maxima during glacial substages 8.2, 6.2 and 2.2, whereas precessionrelated changes are of only minor importance at this location. The results of frequency analyses confirm that productivity at site GeoB 3007 responds predominantly to glacialinterglacial climate changes, while site GeoB 3005 from the open ocean upwelling region near the Gulf of Aden is dominated by precessional insolation. A possible explanation for the pattern revealed at the Owen Ridge is the periodic NW-SE displacement of the Findlater Jet axis, which separates the region of open ocean upwelling to the northwest from downwelling to the southeast ofthe jet. The carbon isotopes of planktic foraminifera reflect nutrient related d13C variations of dissolved inorganic carbon. The difference between the planktic foraminifera Globigerinoides ruber (w), living in the upper 50 m of the water column, and the deeper Iiving Neogloboquadrina dutertrei (Delta d13Cr-d) of core GeoB 3005 displays nutrient variations in the upwelling area near the Gulf of Aden. The results of cross-spectral analyses between Deltad13Cr-d of GeoB 3005 and proxies for SW monsoon intensity indicate, too, a dissociation of productivity from monsoonal upwelling intensity. Instead, productivity depends mainly on the availability of nutrients, while upwelling intensity of sub-surface water masses seems to be of only secondary importance. Additionally, sea surface temperatures (SSTs) were reconstructed using the unsaturation ratio of C37 alkenones. Alkenone SSTs reflect annual mean temperatures rather than explicitly the season of upwelling. This is evident from alkenone SSTs in a transect of surface sediments extending from the inner Gulf of Aden into the western Arabian Sea. The alkenone-derived SST records of GeoB 3005 from the open ocean upwelling region near the Gulf of Aden and GeoB 3007 from the Owen Ridge reveal similar variations with high SSTs during interglacial and low SSTs during glacial periods. The glacial marine oxygen isotope stage (MIS) 6 remains relatively warm and was not as cold as MIS 3 to 4 and 8 according to the alkenone SST. Similar variation-patterns were reconstructed in the coastal upwelling area off Oman for ODP Site 723 as weIl as in the eastern Arabian Sea for MD 900963, where upwelling is not as pronounced as in the western Arabian Sea. Spectral-analyses indicate that SST changes are in good agreement with the modulation of low-latitude precessional insolation changes by eccentricity. However, they do not show the pronounced cydicity in the precessional frequency band, which is characteristic for variations in paleoproductivity. Although the overall variation pattern is very similar, a dose comparison between the western (GeoB 3005) and the eastern Arabian Sea (MD 900963) shows larger differences between both sites during cold intervals than during periods of warm SSTs. This is attributed to a more effective cooling of surface waters in the western Arabian Sea by prolonged NE monsoon winds during times of expanded Northern Hemisphere ice-sheets, thereby lowering the annual mean SSTs stronger than in the eastern Arabian Sea.
Resumo:
We determined alkenone concentrations (µg/g dry sediment) and unsaturation indices (Uk'37) on 280 samples from Ocean Drilling Program Hole 1002C over the last full glacial cycle (marine oxygen isotope Stages [MIS] 1-6). Alkenone concentrations vary dramatically in relation to glacial-interglacial cycles, with high concentrations typical of interglacial stages, high sea level, inferred high surface productivity, and bottom-water anoxia. Our reconstruction of low productivity during the last glacial maximum is consistent with previous reports of a sharp decline in the foraminiferal species Neogloboquadrina dutertrei, an upwelling index. Alkenone paleotemperatures show little cooling at both the last glacial maximum and MIS 6. Variations of as much as 4°C occurred during the earlier part of MIS 3 and MIS 4 as well as the latter part of MIS 5. The absence of cooling during glacial maxima determined from alkenone paleothermometry is consistent with faunal reconstructions for the western Caribbean but requires that much of the oxygen isotopic record of the planktonic foraminifer Globigerinoides ruber be influenced by salinity variations rather than temperature.
Resumo:
Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.
Resumo:
We analysed long-chain alkenones in sinking particles and surface sediments from the filamentous upwelling region off Cape Blanc, NW Africa, to evaluate the transfer of surface water signals into the geological record. Our study is based on time-series sediment trap records from 730 m (1990-1991) to 2195-3562 m depth (1988-1991). Alkenone fluxes showed considerable interannual variations and no consistent seasonality. The average flux of C37 and C38 alkenones to the deep traps was 1.9 µg/m**2/d from March 1988 to October 1990 and sevenfold higher in the subsequent year. Alkenone fluxes to the shallower traps were on average twice as high and showed similar temporal variations. The alkenone unsaturation indices UK'37, UK38Me and UK38Et closely mirrored the seasonal variations in sea-surface temperature (weekly Reynolds SST). Time lags of 10-48 days between the SST and unsaturation maxima suggest particle sinking rates of about 80 and 280 m/d for the periods of low and high alkenone fluxes, respectively. The average flux-weighted UK'37 temperature for the 4-year time series of the deeper traps was 22.1°C, in perfect agreement with the mean weekly SST for the same period. This and the comparison with seasonal temperature variations in the upper 100 m of the water column suggests that UK'37 records principally the yearly average of the mixed-layer temperature in this region. A comparison between the average annual alkenone fluxes to the lower traps (2400 µg/m**2/yr) and into the underlying sediments (4 µg/m**2/yr) suggests that only about 0.2% of the alkenones reaching the deep ocean became preserved in the sediments. The flux-weighted alkenone concentrations also decreased considerably, from 2466 µg/gC in the water column to 62 µg/gC in the surface sediments. Such a low degree of alkenone preservation is typical for slowly accumulating oxygenated sediments. Despite these dramatic diagenetic alkenone losses, the UK'37 ratio was not affected. The average UK'37 value of the sediments (0.796±0.010 or 22.3±0.3°C) was identical within error limits to the 4-year average of the lower traps. The unsaturation indices for C38 alkenones and the ratio between C37 and C38 alkenones also revealed a high degree of stability. Our results do not support the hypothesis that UK'37 is biased towards higher values during oxic diagenesis.
Resumo:
Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoondriven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoondriven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface water (d13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.
Resumo:
The alkenone unsaturation paleothermometer is an important proxy to reconstruct water temperature, and is widely applied to reconstructing sea surface temperature in most oceanographic settings. Recent research indicates that long chain alkenone is preserved in lacustrine sediments, and the alkenone unsaturation has good relationship with mean annual temperature in studied lakes. Thus, the alkenone unsaturation could be used as a temperature proxy to reconstruct temperature in limnic systems. In this study, we analyzed long chain alkenone from the varved sediments in Lake Sihailongwan, northeastern China. Based on the counting varves, we established time scale during the past 1500 years. The distribution pattern in the sediment is similar with the previous study in lacustrine environment. The ratio of C37:4 methyl ketone to the sum of C37 alkenones is high. Based on the published temperature- alkenone unsaturation equation, we reconstructed the mean air temperature and July water temperature during the past 1500 years. Three major cold periods are in AD560-950, AD 1540-1600 and AD1800-1920. Three major warm periods are AD450-550, AD 950-1400 and AD 1600-1800. The Medieval Warm Period was a significant warm periods. However, the traditional “Little Ice Age” was not a persistent cold period, and interrupted by relative longer warm period. The temperature variations in this study show a general similar pattern with the summer temperature reconstruction from Shihua Cave and the winter temperature from historical documents. The temperature variations from long chain alknone record show a good agreement with solar activity (10Be data from ice core and sunspot number from tree rings). It may suggest that solar activity is most important forcing in the studied area.
Resumo:
Biogenic records of the marine palaeoproductivity (carbonates, organic carbon, and C37 alkenones) and the molecular stratigraphy of past sea surface temperatures (SSTs; UK'37) were studied at high resolution in two cores of the Iberian Margin. The comparison of these records indicates that the oceanographic conditions switched abruptly during the past 160 kyr between three kinds of regimes. A first regime with high (17-22°C) SST and low productivity typifies the interglacial periods, marine isotopic stages (MIS) 5 and 1. Several periods during MIS 6, 2, and the terminations II and I are characterised by about 4-5°C colder SST and a higher organic matter accumulation, both of which define the second regime. This anticorrelation between SST and marine productivity suggests that these variations are related to the intensity of the coastal upwelling. By contrast with this upwelling behaviour, extremely low biological productivity and very cold SST (6-12°C) occurred during short phases of glacial MIS 6, 4, and 2, and as abrupt events (~1 kyr or less) during MIS 3. The three oceanographic regimes are consistent with micropalaeontological changes in the same cores based on foraminifera and diatoms. The general trend of these hydrologic changes follows the long-term glacial/interglacial cycle, but the millennium scale variability is clearly related to Heinrich events and Dansgaard-Oeschger cycles. Strengthening of the upwelling corresponds probably to an intensification of the subtropical atmospheric circulation over the North Atlantic which was influenced by the presence of continental ice sheets. However, extreme glacial conditions due to massive discharges of icebergs interrupted the upwelling. Interestingly, both terminations II and I coincided with strong but transient intensification of the upwelling.
Resumo:
Lipid biomarker records from sinking particles collected by sediment traps are excellent tools to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices UK'37 based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m/d) than for GDGTs (9-17 m/d). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the UK'37 index faithfully record observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained with either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters carrying GDGTs in a distribution that translates to a high TEX86 signal.
Resumo:
Subpolar regions are key areas to study natural climate variability, due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37, TEX86 and LDI) on their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long chain alkyl diols were below detection limit in most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes i.e. high fluxes of alkenones and GDGTs were measured during late spring-summer, and high fluxes of long chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3°C for UK'37) and positive (up to 5°C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86 derived temperatures correspond with both annual and winter mean 0-200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments, and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols, suggest that Proboscia diatoms are the major sources of long chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.
Resumo:
Organic matter in sediment samples from three ODP sites (Ocean Drilling Program Leg 167) that form a south-north transect was investigated to reconstruct the paleoclimatic and oceanographic conditions on the California continental margin during the last 160 kyr. Alkenone-derived paleosea surface temperatures (SST) are 3 to 6°C colder in glacial stages and reveal a clear relationship with global climate changes; the differences are greater in the north. Latitudinal SST comparison exhibits water mixing of the colder California Current with warmer waters from the south, particularly in the southern central California borderland area. Organic matter accumulation on the California continental margin indicates an interplay between climatic and atmospheric glacial-interglacial variations and spatially and temporally changing nutrient availability along the California coastline. Climatic and atmospheric dependent circulations apparently caused variations in the intensity of coastal upwelling along the southern central California margin and this suggests, due to the close connection of the California Current to the local wind patterns, that the California Current was weaker during glacial and stronger during interglacial periods.
Resumo:
Reconstructing the impact of Heinrich events outside the main belt of ice rafting is crucial to understanding the underlying causes of these abrupt climatic events. A high-resolution study of a marine sediment core from the Iberian margin demonstrates that this midlatitude area was strongly affected both by cooling and advection of low-salinity arctic water masses during the last three Heinrich events. These paleoclimatic time series reveal the internal complexity of each of the last three Heinrich events and illustrate the value of parallel studies of the organic and inorganic fractions of the sediments.