778 resultados para Alkali metal halides.
Resumo:
A novel simulation model for pyrolysis processes oflignocellulosicbiomassin AspenPlus (R) was presented at the BC&E 2013. Based on kinetic reaction mechanisms, the simulation calculates product compositions and yields depending on reactor conditions (temperature, residence time, flue gas flow rate) and feedstock composition (biochemical composition, atomic composition, ash and alkali metal content). The simulation model was found to show good correlation with existing publications. In order to further verify the model, own pyrolysis experiments in a 1 kg/h continuously fed fluidized bed fast pyrolysis reactor are performed. Two types of biomass with different characteristics are processed in order to evaluate the influence of the feedstock composition on the yields of the pyrolysis products and their composition. One wood and one straw-like feedstock are used due to their different characteristics. Furthermore, the temperature response of yields and product compositions is evaluated by varying the reactor temperature between 450 and 550 degrees C for one of the feedstocks. The yields of the pyrolysis products (gas, oil, char) are determined and their detailed composition is analysed. The experimental runs are reproduced with the corresponding reactor conditions in the AspenPlus model and the results compared with the experimental findings.
Resumo:
The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within 1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values for Ps scattering from more polarizable atoms are discussed.
Resumo:
Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.
Resumo:
Naphthalene and biphenyl dianions are interesting compounds that can be obtained by double reduction of the corresponding arenes in solution with certain alkali metals. These dianions are highly reactive and rather elusive species with very high laying and highly delocalized electrons. They share many aspects of the reactivity of the alkali metal they originated from and consequently behave primarily as strong electron transfer (ET) reagents. We report here kinetic evidence for a different type of reactivity in their alkylation reactions with alkyl fluorides. By using cyclopropylmethyl fluoride (c-C3H5CH2F) as a very fast radical probe, we were able to settle that this alkylation does not involve the classical electron transfer reaction followed by radical coupling between diffusing radicals, but supports the alternative SN2 concerted mechanism, discerning thus this mechanistic SN2-ET dichotomy.
Resumo:
This study investigates fast pyrolysis bio-oils produced from alkali-metal-impregnated biomass (beech wood). The impregnation aim is to study the catalytic cracking of the pyrolysis vapors as a result of potassium or phosphorus. It is recognized that potassium and phosphorus in biomass can have a major impact on the thermal conversion processes. When biomass is pyrolyzed in the presence of alkali metal cations, catalytic cracking of the pyrolysis liquids occurs in the vapor phase, reducing the organic liquids produced and increasing yields of water, char, and gas, resulting in a bio-oil that has a lower calorific value and an increased chance of phase separation. Beech wood was impregnated with potassium or phosphorus (K impregnation and P impregnation, respectively) in the range of 0.10-2.00 wt %. Analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles. Both potassium and phosphorus are seen to catalyze the pyrolytic decomposition of biomass and modify the yields of products. 3-Furaldehyde and levoglucosenone become more dominant products upon P impregnation, pointing to rearrangement and dehydration routes during the pyrolysis process. Potassium has a significant influence on cellulose and hemicellulose decomposition, not just on the formation of levoglucosan but also other species, such as 2(5H)-furanone or hydroxymethyl-cyclopentene derivatives. Fast pyrolysis processing has also been undertaken using a laboratory-scale continuously fed bubbling fluidized-bed reactor with a nominal capacity of 1 kg h-1 at the reaction temperature of 525 °C. An increase in the viscosity of the bio-oil during the stability assessment tests was observed with an increasing percentage of impregnation for both additives. This is because bio-oil undergoes polymerization while placed in storage as a result of the inorganic content. The majority of inorganics are concentrated in the char, but small amounts are entrained in the pyrolysis vapors and, therefore, end up in the bio-oil.
Resumo:
Energy issues have always been a subject of concern to people. During the past 30 years, rechargeable Li-ion batteries (LIBs) have been widely used in portable electronic devices and power tools because of their high energy density and efficiency among practical secondary batteries. While the unevenly distribution of Lithium sources and the increasing cost of lithium-raw material can not satisfy the requirement for further cost reduction, especially for the grid-scale energy storage.
Post-lithium ion batteries as promising replacement for LIBs have attracted wide attention, owing to their high abundant resources and adequate insertion potential. Similar with Li-ion batteries, finding a suitable electrode material is the key for the research and application of the post-Li ion batteries. In our project, we focus our study on Prussian blue analogues (PBAs), with formula AxM[M’(CN)6]1-y□y•zH2O (0≤x≤2, 0
Resumo:
The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In the last ten to fifteen years, there has been a predominant belief that the linear-supralinear-sublinear behaviour of the TL response of alkali halides to the radiation dose necessarily occurs in the heating stage for TL reading. It is based on the assumption that coloration in these crystals grows linear-sublinearly with the dose during irradiation. Since both colour centre and TL centre are based on the same point defects the TL response should also grow linear-sublinearly with dose. In 1950, half a dozen authors showed that the coloration of F-centres in KCl takes place in two stages, the second one being responsible for non-linear behaviour. In this paper, we show that indeed in NaCl both F-centre and TL grow linear-supralinear-sublinearly with the dose during irradiation.
Resumo:
Diode-pumped Yb-doped glass lasers have received considerable attention for applications such as high-power beam production or femtosecond pulses generation. In this paper, we evaluate the laser potential of three different glass families doped with Yb3+ : alkali lead fluorborate (PbO-PbF2-B2O3), heavy metal oxide (Bi2O3-PbO-Ga2O3) and niobium tellurite (TeO2-Nb2O5-K2O-Li2O). Spectroscopic properties were studied for the samples and calculations of the minimum laser pump intensity (I-min), saturation fluence (U-sat) and the theoretical limit of peak power (P-max) are also presented. A comparison of laser properties of these three different glasses and their importance is shown and analyzed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.
Resumo:
Bifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
In this work is presented and tested (for 106 adducts, mainly of the zinc group halides) two empirical equations supported in TG data to estimate the value of the metal-ligand bond dissociation enthalpy for adducts: <D> (M-O) = t i / g if t i < 420 K and <D> (M-O) = (t i / g ) - 7,75 . 10-2 . t i if t i > 420 K. In this empirical equations, t i is the thermodynamic temperature of the beginning of the thermal decomposition of the adduct, as determined by thermogravimetry, andg is a constant factor that is function of the metal halide considered and of the number of ligands, but is not dependant of the ligand itself. To half of the tested adducts the difference between experimental and calculated values was less than 5%. To about 80% of the tested adducts, the difference between the experimental (calorimetric) and the calculated (using the proposed equations) values are less than 15%.
Resumo:
The assembly and testing of apparatus for the measurement of elastic and photoelastic constants by Brillouin scattering, using a Fabry-Perot interferometer and with argon ion laser excitation is described. Such measurements are performed on NaCI, KBr and LiF using the A = 488.0 nm laser line. The elastic constants obtained here are in very good agreement with the ultrasonic data for all three materials. The discrepancy between ultrasonic and hypersonic sound velocities which was reported by some authors for KBr and LiF is not confirmed, and the elastic constants obtained for LiF are the most accurate to date. Also, the present photoelastic constants are in good agreement with the data obtained by ultrasonic techniques for all three crystals. The results for the KBr and LiF crystals constitute the first set of photoelastic constants obtained for these materials by Brillouin spectroscopy. Our results for LiF are the best available to date.