932 resultados para Algebraic geometry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider Sklyanin algebras $S$ with 3 generators, which are quadratic algebras over a field $\K$ with $3$ generators $x,y,z$ given by $3$ relations $pxy+qyx+rzz=0$, $pyz+qzy+rxx=0$ and $pzx+qxz+ryy=0$, where $p,q,r\in\K$. this class of algebras has enjoyed much attention. In particular, using tools from algebraic geometry, Feigin, Odesskii \cite{odf}, and Artin, Tate and Van Den Bergh, showed that if at least two of the parameters $p$, $q$ and $r$ are non-zero and at least two of three numbers $p^3$, $q^3$ and $r^3$ are distinct, then $S$ is Artin--Schelter regular. More specifically, $S$ is Koszul and has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates (PHS). It has became commonly accepted that it is impossible to achieve the same objective by purely algebraic and combinatorial means like the Groebner basis technique. The main purpose of this paper is to trace the combinatorial meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and to give a new constructive proof of the above facts due to Artin, Tate and Van Den Bergh. Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be different. We call them generalized Sklyanin algebras. We classify up to isomorphism all generalized Sklyanin algebras with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in general position have a Golod–Shafarevich Hilbert series (with exception of the case of field with two elements).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este artículo se explica cómo aparece la Geometría Algebraica, partiendo del estudio de los conjuntos de soluciones de sistemas algebraicos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the first part of this thesis, we study the action of the automorphism group of a matroid on the homology space of the co-independent complex. This representation turns out to be isomorphic, up to tensoring with the sign representation, with that on the homology space associated with the lattice of flats. In the case of the cographic matroid of the complete graph, this result has application in algebraic geometry: indeed De Cataldo, Heinloth and Migliorini use this outcome to study the Hitchin fibration. In the second part, on the other hand, we use ideas from algebraic geometry to prove a purely combinatorial result. We construct a Leray model for a discrete polymatroid with arbitrary building set and we prove a generalized Goresky-MacPherson formula. The first row of the model is the Chow ring of the polymatroid; we prove Poincaré duality, Hard-Lefschetz theorem and Hodge-Riemann relations for the Chow ring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we explore the combinatorial properties of several polynomials arising in matroid theory. Our main motivation comes from the problem of computing them in an efficient way and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert--Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity, unimodality); one of our goals is also to provide purely combinatorial interpretations of these properties, for example by redefining these polynomials as poset invariants (via the incidence algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity of these invariants with respect to matroid decompositions, we are able to produce efficient closed formulas for every paving matroid, a class that is conjectured to be predominant among all matroids. One last goal is to extend part of our results to a higher categorical level, by proving analogous results on the original graded vector spaces via abelian categorification or on equivariant versions of these polynomials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this note we describe the intersection of all quadric hypersur- faces containing a given linearly normal smooth projective curve of genus n and degree 2n + 1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an image-based rendering system using algebraic relations between different views of an object. The system uses pictures of an object taken from known positions. Given three such images it can generate "virtual'' ones as the object would look from any position near the ones that the two input images were taken from. The extrapolation from the example images can be up to about 60 degrees of rotation. The system is based on the trilinear constraints that bind any three view so fan object. As a side result, we propose two new methods for camera calibration. We developed and used one of them. We implemented the system and tested it on real images of objects and faces. We also show experimentally that even when only two images taken from unknown positions are given, the system can be used to render the object from other view points as long as we have a good estimate of the internal parameters of the camera used and we are able to find good correspondence between the example images. In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.