984 resultados para Alburni Massif Hydrogeology Caves


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater pumping from aquifers in hydraulic connection with nearby streams is known to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin is shown to be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time and streamflow depletion limits as well as streambed conductance. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Stak massif, northern Pakistan, is a newly recognized occurrence of eclogite formed by the subduction of the northern margin of the Indian continent in the northwest Himalaya. Although this unit was extensively retrogressed during the Himalayan collision, records of the high-pressure (HP) event as well as a continuous pressure-temperature (P-T) path were assessed from a single thin section using a new multiequilibrium method. This method uses microprobe X-ray compositional maps of garnet and omphacitic pyroxene followed by calculations of ∼200,000 P-T estimates using appropriate thermobarometers. The Stak eclogite underwent prograde metamorphism, increasing from 650 °C and 2.4 GPa to the peak conditions of 750 °C and 2.5 GPa, then retrogressed to 700–650 °C and 1.6–0.9 GPa under amphibolite-facies conditions. The estimated peak metamorphic conditions and P-T path are similar to those of the Kaghan and Tso Morari high- to ultrahigh-pressure (HP-UHP) massifs. We propose that these three massifs define a large HP to UHP province in the northwest Himalaya, comparable to the Dabie-Sulu province in China and the Western Gneiss Region in Norway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrology has been suggested as the mechanism controlling vegetation and related surficial pore-water chemistry in large peatlands. Peatland hydrology influences the carbon dynamics within these large carbon reservoirs and will influence their response to global warming. A geophysical survey was completed in Caribou Bog, a large peatland in Maine, to evaluate peatland stratigraphy and hydrology. Geophysical measurements were integrated with direct measurements of peat stratigraphy from probing, fluid chemistry, and vegetation patterns in the peatland. Consistent with previous field studies, ground-penetrating radar (GPR) was an excellent method for delineating peatland stratigraphy. Prominent reflectors from the peat-lake sediment and lake sediment-mineral soil contacts were precisely recorded up to 8 m deep. Two-dimensional resistivity and induced polarization imaging were used to investigate stratigraphy beneath the mineral soil, beyond the range of GPR. We observe that the peat is chargeable, and that IP imaging is an alternative method for defining peat thickness. The chargeability of peat is attributed to the high surface-charge density on partially decomposed organic matter. The electrical conductivity imaging resolved glaciomarine sediment thickness (a confining layer) and its variability across the basin. Comparison of the bulk conductivity images with peatland vegetation revealed a correlation between confining layer thickness and dominant vegetation type, suggesting that stratigraphy exerts a control on hydrogeology and vegetation distribution within this peatland. Terrain conductivity measured with a Geonics EM31 meter correlated with confining glaciomarine sediment thickness and was an effective method for estimating variability in glaciomarine sediment thickness over approximately 18 km(2). Our understanding of the hydrogeology, stratigraphy, and controls on vegetation growth in this peatland was much enhanced from the geophysical study.