964 resultados para Al-cu Alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to a change in silicon morphology, modification of aluminium-silicon alloys with strontium or sodium increases the size of the eutectic grains. To determine the mechanism responsible, eutectic solidification in commercial purity and ultra-high purity aluminium-si I icon alloys, with and without strontium additions, was examined by a quenching technique. In the commercial unmodified alloy, nucleation was prolific while in the high-purity unmodified alloy few eutectic grains nucleated. The addition of strontium to the commercial alloy reduced the number of eutectic grains that nucleated. Addition of strontium to the high-purity alloy did not significantly alter nucleation. It is concluded that commercial purity alloys contain a large number of potent nuclei that are susceptible to poisoning by impurity modification. The flake-to-fibre transition that occurs with impurity modification is shown to be independent of any change in eutectic nucleation mode and frequency. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium phosphide (AlP) particles arc often suggested to be the nucleation site for eutectic silicon in Al-Si alloys, since both the crystal structure and lattice parameter of AlP (crystal structure: cubic K(4) over bar m; lattice parameter: 5.421 Angstrom) are close to that of silicon (cubic Fd3m, 5.431 Angstrom), and the melting point is higher than the Al-Si eutectic temperature. However, the crystallographic relationships between AlP particles and the surrounding eutectic silicon are seldom reported due to the difficulty in analysing the AlP particles, which react with water during sample preparation for polishing. in this study, the orientation relationships between AlP and Si are analysed by transmission electron microscopy using focused ion-beam milling for sample preparation to investigate the nucleation mechanism of eutectic silicon on AlP. The results show a clear and direct lattice relationship between centrally located AlP particles and the surrounding silicon in the hypoeutectic Al-Si alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium modification is known to alter the amount, characteristics, and distribution of porosity in Al-Si castings. Although many theories have been proposed to account for these effects, most can be considered inadequate because of their failure to resolve contradictions and discrepancies in the literature. In an attempt to critically appraise some of these theories, the amount, distribution, and morphology of porosity were examined in sand-cast plates of Sr-free and Sr-containing pure Al, Al-l wt pet Si, and Al-9 wt pet Si alloys. Statistical significance testing was used to verify apparent trends in the porosity data. No apparent differences in the amount, distribution, and morphology of porosity were observed between Sr-free and Sr-containing alloys with no or very small eutectic volume fractions. However, Sr modification significantly changed the amount, distribution, and morphology of porosity in alloys with a significant volume fraction of eutectic. ne addition of Sr reduced porosity in the hot spot region of the casting, and the pores became well dispersed and rounded. This result can be explained by considering the combined effect of the casting design and the differences in the pattern of eutectic solidification between unmodified and Sr-modified alloys.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron is the most common and detrimental impurity in aluminum casting alloys and has long been associated with an increase in casting defects. While the negative effects of iron are clear, the mechanism involved is not fully understood. It is generally believed to be associated with the formation of Fe-rich intermetallic phases. Many factors, including alloy composition, melt superheating, Sr modification, cooling, rate, and oxide bifilms, could play a role. In the present investigation, the interactions between iron and each individual element commonly present in aluminum casting alloys, were investigated using a combination of thermal analysis and interrupted quenching tests. The Fe-rich intermetallic phases were characterized using optical microscope, scanning electron microscope, and electron probe microanalysis (EPMA), and the results were compared with the predictions by Thermocalc. It was found that increasing the iron content changes the precipitation sequence of the beta phase, leading to the precipitation of coarse binary beta platelets at a higher temperature. In contrast, manganese, silicon, and strontium appear to suppress the coarse binary beta platelets, and Mn further promotes the formation of a more compact and less harmful a phase. They are therefore expected to reduce the negative effects of the phase. While reported in the literature, no effect of P on the amount of beta platelets was observed. Finally, attempts are made to correlate the Fe-rich intermetallic phases to the formation of casting defects. The role of the beta phase as a nucleation site for eutectic Si and the role of the oxide bifilms and AIP as a heterogeneous substrate of Fe intermetallics are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to the qualitative analysis of quenched microstructures in three dimensions is presented and demonstrated on unmodified and Sr-modified Al-10% Si samples. The samples were repeatedly polished to obtain a series of digital images through the depth of the microstructure. A three-dimensional reconstruction of the microstructure was obtained by assembling the images of the serial sections. Reconstructions were made of unmodified and Sr-modified Al-Si eutectic grains that were quenched during eutectic solidification. The three-dimensional reconstructions show that strontium modification changes the size and morphology of the Al-Si eutectic grains. Sr-modified eutectic grains are large approximately spherical grains and grow with a high interface velocity. In the unmodified alloy, many small eutectic grains grow from the dendrite arm tips. The unmodified eutectic grains appear to grow from the dendrite tips into the undercooled liquid, rather than back-filling the dendrite envelope, possibly continuing to grow in the same manner as the equiaxed dendrites. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soldering alloys based oft the Sn-Cu alloy system are amongst the most favourable lead-free alternatives due to a range of attractive properties. Trace additions of Ni have been found to significantly improve the soldering characteristics of these alloys (reduced bridging etc.). This paper examines the mechanisms underlying the improvement in soldering properties of Sn-0.7 mass%Cu eutectic alloys modified with concentrations of Ni ranging front 0 to 1000 ppm. The alloys were investigated by thermal analysis during solidification, as well as optical/SEM microanalyses of fully solidified samples anti samples quenched during solidification. It is concluded that Ni additions dramatically alter the nucleation patterns and solidification behaviour of the Sn-Cu6Sn5 eutectic anti that these changes are related to the superior soldering characteristics of the Ni-modified Sn-0.7 mass%Cu alloys.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of SiC particles effectively grain refined a range of Mg-Al alloys. The greatest reductions in grain size were found for the alloys with lower Al contents. The presence of Mg2Si in the microstructure after that SiC addition, and consideration of phase equilibria suggested that the SiC transforms to Al4C3, and this is the actual nucleant. The addition of Mn poisoned the grain refining effect of the SiC addition, probably due to the formation of less potent Al-Mn-carbides. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese is a grain refiner for high purity Mg-3%Al, Mg-6%Al, Mg-9%Al, and commercial AZ31 (Mg-3%Al-1%Zn) alloys when introduced in the form of an Al-60%Mn master alloy splatter but the use of pure Mn flakes and ALTAB (TM) Mn75 tablets shows no grain refinement. Long time holding of the melt at 730 degrees C leads to an increase in grain size. The mechanism is attributed to the presence of all epsilon-AlMn phase (hexagonal close-packed) in the master alloy splatter. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using modifications to the Rappaz-Drezet-Gremaud hot tearing model, and using empirical equations developed for grain size and dendrite arm spacing (DAS) on the addition of grain refiner for a range of cooling rates, the effect of grain refinement and cooling rate on hot tearing susceptibility has been analysed. It was found that grain refinement decreased the grain size and made the grain morphology more globular. Therefore refining the grain size of an equiaxed dendritic grain decreased the hot tearing susceptibility. However, when the alloy was grain refined such that globular grain morphologies where obtained, further grain refinement increased the hot tearing susceptibility. Increasing the cooling decreased the grain size and made the grain morphology more dendritic and therefore increased the likelihood of hot tearing. The effect was particularly strong for equiaxed dendritic grain morphologies; hence grain refinement is increasingly important at high cooling rates to obtain more globular grain morphologies to reduce the hot tearing susceptibility.