930 resultados para Agent System


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objectivo da tese é demonstrar a adequação do paradigma dos mercados electrónicos baseados em agentes para transaccionar objectos multimédia em função do perfil dos espectadores. Esta dissertação descreve o projecto realizado no âmbito da plataforma de personalização de conteúdos em construção. O domínio de aplicação adoptado foi a personalização dos intervalos publicitários difundidos pelos distribuidores de conteúdos multimédia, i.e., pretende-se gerar em tempo útil o alinhamento de anúncios publicitários que melhor se adeqúe ao perfil de um espectador ou de um grupo de espectadores. O projecto focou-se no estudo e selecção das tecnologias de suporte, na concepção da arquitectura e no desenvolvimento de um protótipo que permitisse realizar diversas experiências nomeadamente com diferentes estratégias e tipos de mercado. A arquitectura proposta para a plataforma consiste num sistema multiagente organizado em três camadas que disponibiliza interfaces do tipo serviço Web com o exterior. A camada de topo é constituída por agentes de interface com o exterior. Na camada intermédia encontram-se os agentes autónomos que modelam as entidades produtoras e consumidoras de componentes multimédia assim como a entidade reguladora do mercado. Estes agentes registam-se num serviço de registo próprio onde especificam os componentes multimédia que pretendem negociar. Na camada inferior realiza-se o mercado que é constituído por agentes delegados dos agentes da camada superior. O lançamento do mercado é efectuado através de uma interface e consiste na escolha do tipo de mercado e no tipo de itens a negociar. Este projecto centrou-se na realização da camada do mercado e da parte da camada intermédia de apoio às actividades de negociação no mercado. A negociação é efectuada em relação ao preço da transmissão do anúncio no intervalo em preenchimento. Foram implementados diferentes perfis de negociação com tácticas, incrementos e limites de variação de preço distintos. Em termos de protocolos de negociação, adoptou-se uma variante do Iterated Contract Net – o Fixed Iterated Contract Net. O protótipo resultante foi testado e depurado com sucesso.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Belief revision is a critical issue in real world DAI applications. A Multi-Agent System not only has to cope with the intrinsic incompleteness and the constant change of the available knowledge (as in the case of its stand alone counterparts), but also has to deal with possible conflicts between the agents’ perspectives. Each semi-autonomous agent, designed as a combination of a problem solver – assumption based truth maintenance system (ATMS), was enriched with improved capabilities: a distributed context management facility allowing the user to dynamically focus on the more pertinent contexts, and a distributed belief revision algorithm with two levels of consistency. This work contributions include: (i) a concise representation of the shared external facts; (ii) a simple and innovative methodology to achieve distributed context management; and (iii) a reduced inter-agent data exchange format. The different levels of consistency adopted were based on the relevance of the data under consideration: higher relevance data (detected inconsistencies) was granted global consistency while less relevant data (system facts) was assigned local consistency. These abilities are fully supported by the ATMS standard functionalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.