761 resultados para Aerodynamics, Supersonic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic airstream, The vitiated air was produced by burning H-2, O-2, and air to a stagnation temperature of 1000-2100 K and a stagnation pressure of 0.8-1.6 MPa, The effects of different parameters on the self-ignition limits were analyzed, In addition, the effects of the combustor's different wall configurations on self-ignition limits were specifically studied. It was found that the wall configurations of the combustor had a significant effect on self-ignition limits, which might have variations of 420-840 K deg in stagnation temperature; however, the local static temperature in the recirculation zones for different wall configurations remained the same at approximately 1100 K, It was found that self-ignition could initiate at the exit of the combustor and this can be considered as a weak self-ignition characteristic.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled equations defined in a physical plane are changed into those in a computational plane with coordinate transformations suitable for different Mach number M(infinity). The computational area is limited in the body surface and in the vicinities of detached shock wave and sonic line. Thus the area can be greatly cut down when the shock wave moves away from the body surface as M(infinity) --> 1. Highly accurate, total variation diminishing (TVD) finite-difference schemes are used to calculate the low supersonic flowfield around a sphere. The stand-off distance, location of sonic line, etc. are well comparable with experimental data. The long pending problem concerning a flow passing a sphere at 1.3 greater-than-or-equal-to M(infinity) > 1 has been settled, and some new results on M(infinity) = 1.05 have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of vaporized aviation kerosene injection in a supersonic model combustor were preliminarily investigated. The electrically storage type heater has a volume capacity of heating kerosene of 0.8 kg up to 670 K at a pressure of 5.5 Mpa. The temperature to cause pressurized kerosene jet being fully vaporized in Quiescent atmosphere was found to be 550 K at 4 Mpa however the pressurized hot kerosene remains in liquid state within the tube. The correspondent jet spray in Mach 2.5 vitiated air cross-flow were visualized by using stop schlieren photograph.It was found the penetration depth of the hot pressurized kerosene jet is approximately same with the temperature varied from 290 K to 550 k. at pressure of 4 Mpa. This results showed that the atomization process of hot kerosene jet spray in supersonic combustor could be bypassed and directly transferred to be gas state at temperature 550 K and pressure of 4 Mpa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation was conducted to characterize the kerosene spray injecting into supersonic cross flow, especially focusing on the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of supersonic combustion by injecting kerosene vapor into a Mach 2.5 crossflow at various preheat temperatures and pressures were investigated experimentally. A two-stage heating system has been designed and tested, which can prepare heated kerosene of 0.8 kg up to 820 K at pressure of 5.5 Mpa with minimum/negligible fuel coking. In order to simulate the thermophysical properties of kerosene over a wide range of thermodynamic conditions, a three-component surrogate that matches the compound class of the parent fuel was employed. The flow rate of kerosene vapor was calibrated using a sonic nozzle. Computed flow rates using the surrogate fuel are in agreement with the experimental data. Kerosene jets at various preheat temperatures injecting into both quiescent environment and Mach 2.5 crossflow were visualized. It was found that at injection pressure of 4 Mpa and preheat temperature of 550 K the kerosene jet was completely in vapor phase, while keeping almost the same penetration depth as compared to the liquid kerosene injection. Supersonic combustion tests were also carried out to compare the combustor performance for the cases of vaporized kerosene injection, liquid kerosene injection, and effervescent atomization with hydrogen barbotage, under the similar stagnation conditions. Experimental results demonstrated that the use of vaporized kerosene injection leads to better combustor performance. Further parametric study on vaporized kerosene injection in a supersonic model combustor is needed to assess the combustion efficiency as well as to identify the controlling mechanism for the overall combustion enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will introduce an atomization experiment of pulsed supersonic water jets and polymer polyacrylamide (PAA) (0.1% and 1.0% weight density) solution jets. The jets are generated from a small high-speed liquid jet apparatus. The schlieren photography is applied to visualize the jets. The velocities of the jets are measured by cutting two laser beams. The effects of the nozzle diameter and the standoff distance on atomization and the jet velocity have been examined. The experiment shows that the polymer solution jets are easier to be atomized than water jets. This may be due to low surface tension of the polymer solution. The nozzle diameter causes different shock structures around the supersonic jets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection and combustion of vaporized kerosene was experimentally investigated in a Mach 2.5 model combustor at various fuel temperatures and injection pressures. A unique kerosene heating and delivery system, which can prepare heated kerosene up to 820 K at a pressure of 5.5 MPa with negligible fuel coking, was developed. A three-species surrogate was employed to simulate the thermophysical properties of kerosene. The calculated thermophysical properties of surrogate provided insight into the fuel flow control in experiments. Kerosene jet structures at various preheat temperatures injecting into both quiescent environment and a Mach 2.5 crossflow were characterized. It was shown that the use ofvaporized kerosene injection holds the potential of enhancing fuel-air mixing and promoting overall burning. Supersonic combustion tests further confirmed the preceding conjecture by comparing the combustor performances of supercritical kerosene with those of liquid kerosene and effervescent atomization with hydrogen barbotage. Under the similar flow conditions and overall kerosene equivalence ratios, experimental results illustrated that the combustion efficiency of supercritical kerosene increased approximately 10-15% over that of liquid kerosene, which was comparable to that of effervescent atomization.