121 resultados para Aeroacoustics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to separate acoustically radiating and non-radiating components in fluid flow is desirable to identify the true sources of aerodynamic sound, which can be expressed in terms of the non-radiating flow dynamics. These non-radiating components are obtained by filtering the flow field. Two linear filtering strategies are investigated: one is based on a differential operator, the other employs convolution operations. Convolution filters are found to be superior at separating radiating and non-radiating components. Their ability to decompose the flow into non-radiating and radiating components is demonstrated on two different flows: one satisfying the linearized Euler and the other the Navier-Stokes equations. In the latter case, the corresponding sound sources are computed. These sources provide good insight into the sound generation process. For source localization, they are found to be superior to the commonly used sound sources computed using the steady part of the flow. Copyright © 2009 by S. Sinayoko, A. Agarwal, Z. Hu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two shock-capturing methods are considered. One is based on a standard conservative Roe scheme with van Leer's MUSCL variable extrapolation method applied to characteristic variables and a Runge-Kutta time stepping scheme. The other is based on the novel CABARET space-time scheme, which uses two sets of staggered variables, one for the conservation step and the other for characteristic splitting into local Riemann invariants. The methods are compared in a range of 2-D inviscid compressible flow test cases. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multimode sound radiation from hard-walled semi-infinite ducts with uniform subsonic flow is investigated theoretically. An analytic expression, valid in the high frequency limit, is derived for the multimode directivity function in the forward arc for a general family of mode distribution functions. The multimode directivity depends on the amplitude and directivity function of each individual mode. The amplitude of each mode is expressed as a function of cut-off ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles and for equal power per mode. The modes' directivity functions are obtained analytically by applying a Lorentz transformation to the zero flow solution. The analytic formula for the multimode directivity with flow is derived assuming total transmission of power at the open-end of the duct. This formula is compared to the exact numerical result for an unflanged duct, computed utilizing a Wiener-Hopf solution. The agreement is shown to be excellent. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive a closed system of equations that relates the acoustically radiating flow variables to the sources of sound for homentropic flows. We use radiating density, momentum density and modified pressure as the dependent variables which leads to simple source terms for the momentum equations. The source terms involve the non-radiating parts of the density and momentum density fields. These non-radiating components are obtained by removing the radiating wavenumbers in the Fourier domain. We demonstrate the usefulness of this new technique on an axi-symmetric jet solution of the Navier-Stokes equations, obtained by direct numerical simulation (DNS). The dominant source term is proportional to the square of the non-radiating part of the axial momentum density. We compare the sound sources to that obtained by an acoustic analogy and find that they have more realistic physical properties. Their frequency content and amplitudes are consistent with. We validate the sources by computing the radiating sound field and comparing it to the DNS solution. © 2010 by S. Sinayoko, A. Agarwal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several turbulent jet noise models starting from the classical Lighthill acoustic analogy to state-of-the art models are considered. No attempt is made to present any complete overview of jet noise theories. Instead, the aim is to emphasise the importance of sound generation and meanflow effects for the understanding and prediction of jet noise. For a recent acoustic analogy model, the consequences of jet flow simplification on the predicted sound spectra shape and the effective noise source location in the jet are discussed. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large eddy simulation (LES) type studies are made of a realistic geometry coaxial nozzle with a pylon. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving Numerical LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier Stokes) model is used giving a hybrid NLES-RANS approach.The pylon is shown to influence the flow development, having a significant impact on peak turbulence levels and spreading rates. The results show that real geometry effects are influential and should be taken into account when moving towards real engine simulations. If their effects are ignored then, based on the studies here, key turbulence parameters will have significant error.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.