857 resultados para Adaptive equalisation
Resumo:
Artificial Intelligence has been applied to dynamic games for many years. The ultimate goal is creating responses in virtual entities that display human-like reasoning in the definition of their behaviors. However, virtual entities that can be mistaken for real persons are yet very far from being fully achieved. This paper presents an adaptive learning based methodology for the definition of players’ profiles, with the purpose of supporting decisions of virtual entities. The proposed methodology is based on reinforcement learning algorithms, which are responsible for choosing, along the time, with the gathering of experience, the most appropriate from a set of different learning approaches. These learning approaches have very distinct natures, from mathematical to artificial intelligence and data analysis methodologies, so that the methodology is prepared for very distinct situations. This way it is equipped with a variety of tools that individually can be useful for each encountered situation. The proposed methodology is tested firstly on two simpler computer versus human player games: the rock-paper-scissors game, and a penalty-shootout simulation. Finally, the methodology is applied to the definition of action profiles of electricity market players; players that compete in a dynamic game-wise environment, in which the main goal is the achievement of the highest possible profits in the market.
Resumo:
Infotainment applications in vehicles are currently supported both by the in-vehicle platform, as well as by user’s smart devices, such as smartphones and tablets. More and more the user expects that there is a continuous service of applications inside or outside of the vehicle, provided in any of these devices (a simple but common example is hands-free mobile phone calls provided by the vehicle platform). With the increasing complexity of ‘apps’, it is necessary to support increasing levels of Quality of Service (QoS), with varying resource requirements. Users may want to start listening to music in the smartphone, or video in the tablet, being this application transparently ‘moved’ into the vehicle when it is started. This paper presents an adaptable offloading mechanism, following a service-oriented architecture pattern, which takes into account the QoS requirements of the applications being executed when making decisions.
Resumo:
RTUWO Advances in Wireless and Optical Communications 2015 (RTUWO 2015). 5-6 Nov Riga, Latvia.
Resumo:
A novel control technique is investigated in the adaptive control of a typical paradigm, an approximately and partially modeled cart plus double pendulum system. In contrast to the traditional approaches that try to build up ”complete” and ”permanent” system models it develops ”temporal” and ”partial” ones that are valid only in the actual dynamic environment of the system, that is only within some ”spatio-temporal vicinity” of the actual observations. This technique was investigated for various physical systems via ”preliminary” simulations integrating by the simplest 1st order finite element approach for the time domain. In 2004 INRIA issued its SCILAB 3.0 and its improved numerical simulation tool ”Scicos” making it possible to generate ”professional”, ”convenient”, and accurate simulations. The basic principles of the adaptive control, the typical tools available in Scicos, and others developed by the authors, as well as the improved simulation results and conclusions are presented in the contribution.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Adventure! The Paladin Order foi um projecto ambicioso que começou por ser desenvolvido como um video jogo completo. Tinha como objéctivo implementar uma ferramenta diferente que permitisse tornar o jogo completamente adaptativo às decisões do jogador tanto nas interacções e no diálogo com outras personagens, assim como no combate contra os variados inímigos do jogo. Devido à inexperiência do autor uma grande parte do tempo foi passado a estudar e a pesquisar várias possíveis soluções que permitissem criar um ambiente que fosse adaptativo de uma forma simples e interessante, não só para os programadores mas também para qualquer pessoa que fosse responsável por editar o diálogo e a história do jogo. Os resultados foram bastante interessantes, revelando um sistema que depende simultaneamente dos ficheiros de onde é retirado o diálogo, e de um sistema de personalidades que permite definir qual será o comportamento de qualquer objecto do jogo ou, pelo menos, como as outras personagens irão reagir. O produto final é uma ferramenta de bases sólidas que permite uma implementação relativamente simples de um sistema abrangente e adaptativo, com poucas falhas e apenas algumas questões de simplicidade de código.
Resumo:
O ensino à distância cresceu consideravelmente nos últimos anos e a tendência é para que continue a crescer em anos vindouros. No entanto, enquanto que a maioria das plataformas de ensino à distância utilizam a mesma abordagem de ensino para todos os utilizadores, os estudantes que as usam são na realidade pessoas de diferentes culturas, locais, idades e géneros, e que possuem diferentes níveis de educação. Ao contrário do ensino à distância tradicional, os sistemas de hipermédia adaptativa educacional adaptam interface, apresentação de conteúdos e navegação, entre outros, às características, necessidades e interesses específicos de diferentes utilizadores. Apesar da investigação na área de sistemas de hipermédia adaptativa já estar bastante desenvolvida, é necessário efetuar mais desenvolvimento e experimentação de modo a determinar quais são os aspetos mais eficazes destes sistemas e avaliar o seu sucesso. A Plataforma de Aprendizagem Colaborativa da Matemática (PCMAT) é um sistema de hipermédia adaptativa educacional com uma abordagem construtivista, que foi desenvolvido com o objetivo de contribuir para a investigação na área de sistemas de hipermédia adaptativa. A plataforma avalia o conhecimento do utilizador e apresenta conteúdos e atividades adaptadas às características e estilo de aprendizagem dominante de estudantes de matemática do segundo ciclo. O desenvolvimento do PCMAT tem também o propósito de auxiliar os alunos Portugueses com a aprendizagem da matemática. De acordo com o estudo PISA 2012 da OCDE [OECD, 2014], o desempenho dos alunos Portugueses na área da matemática melhorou em relação à edição anterior do estudo, mas os resultados obtidos permanecem abaixo da média da OCDE. Por este motivo, uma das finalidades deste projeto é desenvolver um sistema de hipermédia adaptativa que, ao adequar o ensino da matemática às necessidades específicas de cada aluno, os assista com a aquisição de conhecimento. A adaptação é efetuada pelo sistema usando a informação constante no modelo do utilizador para definir um grafo de conceitos do domínio específico. Este grafo é adaptado do modelo do domínio e utilizado para dar resposta às necessidades particulares de cada aluno. Embora a trajetória inicial seja definida pelo professor, o percurso percorrido no grafo por cada aluno é determinado pela sua interação com o sistema, usando para o efeito a representação do conhecimento do aluno e outras características disponíveis no modelo do utilizador, assim como avaliação progressiva. A adaptação é conseguida através de alterações na apresentação de conteúdos e na estrutura e anotações das hiperligações. A apresentação de conteúdos é alterada mostrando ou ocultando cada um dos vários fragmentos que compõe as páginas dum curso. Estes fragmentos são compostos por diferentes objetos de aprendizagem, tais como exercícios, figuras, diagramas, etc. As mudanças efetuadas na estrutura e anotações das hiperligações têm o objetivo de guiar o estudante, apontando-o na direção do conhecimento mais relevante e mantendo-o afastado de informação inadequada. A escolha de objectos de aprendizagem adequados às características particulares de cada aluno é um aspecto essencial do modelo de adaptação do PCMAT. A plataforma inclui para esse propósito um módulo responsável pela recomendação de objectos de aprendizagem, e um módulo para a pesquisa e recuperação dos mesmos. O módulo de recomendação utiliza lógica Fuzzy para converter determinados atributos do aluno num conjunto de parâmetros que caracterizam o objecto de aprendizagem que idealmente deveria ser apresentado ao aluno. Uma vez que o objecto “ideal” poderá não existir no repositório de objectos de aprendizagem do sistema, esses parâmetros são utilizados pelo módulo de pesquisa e recuperação para procurar e devolver ao módulo de recomendação uma lista com os objectos que mais se assemelham ao objecto “ideal”. A pesquisa é feita numa árvore k-d usando o algoritmo k-vizinhos mais próximos. O modelo de recomendação utiliza a lista devolvida pelo módulo de pesquisa e recuperação para seleccionar o objecto de aprendizagem mais apropriado para o aluno e processa-o para inclusão numa das páginas Web do curso. O presente documento descreve o trabalho desenvolvido no âmbito do projeto PCMAT (PTDS/CED/108339/2008), dando relevância à adaptação de conteúdos.
Resumo:
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn+ bladder cancer cells, had an immature phenotype (MHC-IIlow, CD80low and CD86low) and were unresponsive to further maturation stimuli. When contacting with STn+ cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn+ cancer cells were not activated and showed a FoxP3high IFN-γlow phenotype. Blockade of STn antigens and of STn+ glycoprotein, CD44 and MUC1, in STn+ cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn+ glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Difficult and unpredictable times, due to economic instability, lead employees to feel high job insecurity. Organizations’ only way to subsistence is to search innovative ways of solving problems and find creative solutions. This study focuses on the impact that job insecurity has on adaptive performance, a recent measure integrating the response of creativity, reactivity in the face of emergencies, interpersonal adaptability, training effort, and handling work stress, and, mediated by burnout. From the responses of two questionnaires (????????1=252; ????????2=145), we conclude that job insecurity leads to exhaustion, but not to disengagement. In turn, it is the latter that demonstrates to have negative relations with some measures of adaptive performance. Thus, it is crucial to understand how organizations can minimize the inherent process.
Resumo:
It is a difficult task to avoid the “smart systems” topic when discussing smart prevention and, similarly, it is a difficult task to address smart systems without focusing their ability to learn. Following the same line of thought, in the current reality, it seems a Herculean task (or an irreparable omission) to approach the topic of certified occupational health and safety management systems (OHSMS) without discussing the integrated management systems (IMSs). The available data suggest that seldom are the OHSMS operating as the single management system (MS) in a company so, any statement concerning OHSMS should mainly be interpreted from an integrated perspective. A major distinction between generic systems can be drawn between those that learn, i.e., those systems that have “memory” and those that have not. These former systems are often depicted as adaptive since they take into account past events to deal with novel, similar and future events modifying their structure to enable success in its environment. Often, these systems, present a nonlinear behavior and a huge uncertainty related to the forecasting of some events. This paper seeks to portray, for the first time as we were able to find out, the IMSs as complex adaptive systems (CASs) by listing their properties and dissecting the features that enable them to evolve and self-organize in order to, holistically, fulfil the requirements from different stakeholders and thus thrive by assuring the successful sustainability of a company. Based on the revision of literature carried out, this is the first time that IMSs are pointed out as CASs which may develop fruitful synergies both for the MSs and for CASs communities. By performing a thorough revision of literature and based on some concepts embedded in the “DNA” of the subsystems implementation standards it is intended, specifically, to identify, determine and discuss the properties of a generic IMS that should be considered to classify it as a CAS.
Resumo:
The paper reflects the work of COST Action TU1403 Workgroup 3/Task group 1. The aim is to identify research needs from a review of the state of the art of three aspects related to adaptive façade systems: (1) dynamic performance requirements; (2) façade design under stochastic boundary conditions and (3) experiences with adaptive façade systems and market needs.