941 resultados para Adaptive control charts
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
Varying the parameters of the X̄ chart has been explored extensively in recent years. In this paper, we extend the study of the X̄ chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the X̄ falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the X̄ falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the X̄ chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
We develop an economic model for X̄ control charts having all design parameters varying in an adaptive way, that is, in real time considering current sample information. In the proposed model, each of the design parameters can assume two values as a function of the most recent process information. The cost function is derived and it provides a device for optimal selection of the design parameters. Through a numerical example one can foresee the savings that the developed model possibly provides. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.