922 resultados para Adaptive analysis
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
Australia’s governance arrangements for NRM have evolved considerably over the last thirty years. The impact of changes in governance on NRM planning and delivery requires assessment. We undertake a multi-method program evaluation using adaptive governance principles as an analytical frame and apply this to Queensland to assess the impacts of governance change on NRM planning and governance outcomes. Data to inform our analysis includes: 1) a systematic review of sixteen audits/evaluations of Australian NRM over a fifteen-year period; 2) a review of Queensland’s first generation NRM Plans; and 3) outputs from a Queensland workshop on NRM planning. NRM has progressed from a bottom-up grassroots movement into a collaborative regional NRM model that has been centralised by the Australian Government. We found that while some adaptive governance challenges have been addressed, others remained unresolved. Results show that collaboration and elements of multi-level governance under the regional model were positive moves, but also that NRM arrangements contained structural deficiencies across multiple governance levels in relation to public involvement in decision-making and knowledge production for problem responsiveness. These problems for adaptive governance have been exacerbated since 2008. We conclude that the adaptive governance framework for NRM needs urgent attention so that important environmental management problems can be addressed.
Resumo:
This book represents a landmark effort to probe and analyze the theory and empirics of designing water disaster management policies. It consists of seven chapters that examine, in-depth and comprehensively, issues that are central to crafting effective policies for water disaster management. The authors use historical surveys, institutional analysis, econometric investigations, empirical case studies, and conceptual-theoretical discussions to clarify and illuminate the complex policy process. The specific topics studied in this book include a review and analysis of key policy areas and research priority areas associated with water disaster management, community participation in disaster risk reduction, the economics and politics of ‘green’ flood control, probabilistic flood forecasting for flood risk management, polycentric governance and flood risk management, drought management with the aid of dynamic inter-generational preferences, and how social resilience can inform SA/SIA for adaptive planning for climate change in vulnerable areas. A unique feature of this book is its analysis of the causes and consequences of water disasters and efforts to address them successfully through policy-rich, cross-disciplinary and transnational papers. This book is designed to help enrich the sparse discourse on water disaster management policies and galvanize water professionals to craft creative solutions to tackle water disasters efficiently, equitably, and sustainably. This book should also be of considerable use to disaster management professionals, in general, and natural resource policy analysts.
Resumo:
Background and purpose Adaptive radiotherapy (ART) can account for the dosimetric impact of anatomical change in head and neck cancer patients; however it can be resource intensive. Consequently, it is imperative that patients likely to require ART are identified. The purpose of this study was to find predictive factors that identify oropharyngeal squamous cell carcinoma (OPC) and nasopharyngeal carcinoma (NPC) patients more likely to need ART. Materials and methods One hundred and ten patients with OPC or NPC were analysed. Patient demographics and tumour characteristics were compared between patients who were replanned and those that were not. Factors found to be significant were included in logistic regression models. Risk profiles were developed from these models. A dosimetric analysis was performed. Results Nodal disease stage, pre-treatment largest involved node size, diagnosis and initial weight (categorised in 2 groups) were identified as significant for inclusion in the model. Two models were found to be significant (p = 0.001), correctly classifying 98.2% and 96.1% of patients respectively. Three ART risk profiles were developed. Conclusion Predictive factors identifying OPC or NPC patients more likely to require ART were reported. A risk profile approach could facilitate the effective implementation of ART into radiotherapy departments through forward planning and appropriate resource allocation.
Resumo:
Background: Rhinoviruses (RV) are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods: Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old). Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results: Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p < 0.02 and p < 0.05) and ≥52 year old women (p < 0.02 and p > 0.005). There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions: This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.
Resumo:
The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
We compare two popular methods for estimating the power spectrum from short data windows, namely the adaptive multivariate autoregressive (AMVAR) method and the multitaper method. By analyzing a simulated signal (embedded in a background Ornstein-Uhlenbeck noise process) we demonstrate that the AMVAR method performs better at detecting short bursts of oscillations compared to the multitaper method. However, both methods are immune to jitter in the temporal location of the signal. We also show that coherence can still be detected in noisy bivariate time series data by the AMVAR method even if the individual power spectra fail to show any peaks. Finally, using data from two monkeys performing a visuomotor pattern discrimination task, we demonstrate that the AMVAR method is better able to determine the termination of the beta oscillations when compared to the multitaper method.
Resumo:
Genetic studies on phylogeography and adaptive divergence in Northern Hemisphere fish species such as three-spined stickleback (Gasterosteus aculeatus) provide an excellent opportunity to investigate genetic mechanisms underlying population differentiation. According to the theory, the process of population differentiation results from a complex interplay between random and deterministic processes as well historical factors. The main scope in this thesis was to study how historical factors like the Pleistocene ice ages have shaped the patterns molecular diversity in three-spined stickleback populations in Europe and how this information could be utilized in the conservation genetic context. Furthermore, identifying footprints of natural selection at the DNA level might be used in identifying genes involved in evolutionary change. Overall, the results from phylogeographic studies indicate that the three-spined stickleback has colonized the Atlantic basin relatively recently but constitutes three major evolutionary lineages in Europe. In addition, the colonization of freshwater appears to result from multiple and independent invasions by the marine conspecifics. Molecular data together with morphology suggest that the most divergent freshwater populations are located in the Balkan Peninsula and these populations deserve a special conservation genetic status without warranting further taxonomical classification. In order to investigate the adaptive divergence in Fennoscandian three-spined stickleback populations several approaches were used. First, sequence variability in the Eda-gene, coding for the number of lateral plates, was concordant with the previously observed global pattern. Full plated allele is in high frequencies among marine populations whereas low plated allele dominates in the freshwater populations. Second, a microsatellite based genome scan identified both indications of balancing and directional selection in the three-spined stickleback genome, i.e. loci with unusually similar or unusually different allele frequencies over populations. The directionally selected loci were mainly associated with the adaptation to freshwater. A follow up study conducting a more detailed analysis in a chromosome region containing a putatively selected gene locus identified a fairly large genomic region affected by natural selection. However, this region contained several gene predictions, all of which might be the actual target of natural selection. All in all, the phylogeographic and adaptive divergence studies indicate that most of the genetic divergence has occurred in the freshwater populations whereas the marine populations have remained relatively uniform.
Resumo:
Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.
Resumo:
Child sexual abuse is widespread and difficult to detect. To enhance case identification, many societies have enacted mandatory reporting laws requiring designated professionals, most often police, teachers, doctors and nurses, to report suspected cases to government child welfare agencies. Little research has explored the effects of introducing a reporting law on the number of reports made, and the outcomes of those reports. This study explored the impact of a new legislative mandatory reporting duty for child sexual abuse in the State of Western Australia over seven years. We analysed data about numbers and outcomes of reports by mandated reporters, for periods before the law (2006-08) and after the law (2009-12). Results indicate that the number of reports by mandated reporters of suspected child sexual abuse increased by a factor of 3.7, from an annual mean of 662 in the three year pre-law period to 2448 in the four year post-law period. The increase in the first two post-law years was contextually and statistically significant. Report numbers stabilised in 2010-12, at one report per 210 children. The number of investigated reports increased threefold, from an annual mean of 451 in the pre-law period to 1363 in the post-law period. Significant decline in the proportion of mandated reports that were investigated in the first two post-law years suggested the new level of reporting and investigative need exceeded what was anticipated. However, a subsequent significant increase restored the pre-law proportion, suggesting systemic adaptive capacity. The number of substantiated investigations doubled, from an annual mean of 160 in the pre-law period to 327 in the post-law period, indicating twice as many sexually abused children were being identified.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.
Resumo:
In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.