934 resultados para Acute Myelomonocytic Leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Several clinical trials conducted in Europe and US reported favorable outcomes of patients with APL treated with the combination of all trans retinoic acid (ATRA) and anthracyclines. Nevertheless, the results observed in developing countries with the same regimen was poorer, mainly due to high early mortality mainly due bleeding. The International Consortium on Acute Promyelocytic Leukemia (IC-APL) is an initiative of the International Members Committee of the ASH and the project aims to reduce this gap through the establishment of international network, which was launched in Brazil, Mexico and Uruguay. Methods: The IC-APL treatment protocol is similar to the PETHEMA 2005, but changing idarubicin to daunorubicin. All patients with a suspected diagnosis of APL were immediately started on ATRA, while bone marrow samples were shipped to a national central lab where genetic verification of the diagnosis was performed. The immunofluorescence using an anti-PML antibody allowed a rapid confirmation of the diagnosis and, the importance of supportive measures was reinforced. Results: The interim analysis of 97 patients enrolled in the IC-APL protocol showed that complete remission (CR) rate was 83% and the 2-year overall survival and disease-free survival were 80% and 90%, respectively. Of note, the early mortality rate was reduced to 7.5%. Discussion: The results of IC-APL demonstrate the impact of educational programs and networking on the improvement of the leukemia treatment outcome in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias, with a propensity for evolution into acute myeloid leukemias (AML). This transformation is driven by genomic instability, but mechanisms remain unknown. Telomere dysfunction might generate genomic instability leading to cytopenias and disease progression. Experimental Design: We undertook a pilot study of 94 patients with MDS (56 patients) and AML (38 patients). The MDS cohort consisted of refractory cytopenia with multilineage dysplasia (32 cases), refractory anemia (12 cases), refractory anemia with excess of blasts (RAEB) 1 (8 cases), RAEB2 (1 case), refractory anemia with ring sideroblasts (2 cases), and MDS with isolated del(5q) (1 case). The AML cohort was composed of AML-M4 (12 cases), AML-M2 (10 cases), AML-M5 (5 cases), AML-M0 (5 cases), AML-M1 (2 cases), AML-M4eo (1 case), and AML with multidysplasia-related changes (1 case). Three-dimensional quantitative FISH of telomeres was carried out on nuclei from bone marrow samples and analyzed using TeloView. Results: We defined three-dimensional nuclear telomeric profiles on the basis of telomere numbers, telomeric aggregates, telomere signal intensities, nuclear volumes, and nuclear telomere distribution. Using these parameters, we blindly subdivided the MDS patients into nine subgroups and the AML patients into six subgroups. Each of the parameters showed significant differences between MDS and AML. Combining all parameters revealed significant differences between all subgroups. Three-dimensional telomeric profiles are linked to the evolution of telomere dysfunction, defining a model of progression from MDS to AML. Conclusions: Our results show distinct three-dimensional telomeric profiles specific to patients with MDS and AML that help subgroup patients based on the severity of telomere dysfunction highlighted in the profiles. Clin Cancer Res; 18(12); 3293-304. (C) 2012 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To address the prognostic value of minimal residual disease (MRD) before unrelated cord blood transplantation (UCBT) in children with acute lymphoblastic leukemia (ALL), we analyzed 170 ALL children transplanted in complete remission (CR) after myeloablative conditioning regimen. In all, 72 (43%) were in first CR (CR1), 77 (45%) in second CR (CR2) and 21 (12%) in third CR (CR3). The median interval from MRD quantification to UCBT was 18 days. All patients received single-unit UCBT. Median follow-up was 4 years. Cumulative incidence (CI) of day-60 neutrophil engraftment was 85%. CI of 4 years relapse was 30%, incidence being lower in patients with negative MRD before UCBT (hazard ratio (HR) = 0.4, P = 0.01) and for those transplanted in CR1 and CR2 (HR = 0.3, P = 0.002). Probability of 4 years leukemia-free survival (LFS) was 44%, (56, 44 and 14% for patients transplanted in CR1, CR2 and CR3, respectively (P = 0.0001)). Patients with negative MRD before UCBT had better LFS after UCBT compared with those with positive MRD (54% vs 29%; HR = 2, P = 0.003). MRD assessment before UCBT for children with ALL in remission allows identifying patients at higher risk of relapse after transplantation. Approaches that may decrease relapse incidence in children given UCBT with positive MRD should be investigated to improve final outcomes. Leukemia (2012) 26, 2455-2461; doi:10.1038/leu.2012.123

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: CD56 expression has been associated with a poor prognosis in lymphoid neoplasms, including T-cell acute lymphoblastic leukemia (T-ALL). MicroRNAs (miRNAs) play an important role in lymphoid differentiation, and aberrant miRNA expression has been associated with treatment outcome in lymphoid malignancies. Here, we evaluated miRNA expression profiles in normal thymocytes, mature T-cells, and T-ALL samples with and without CD56 expression and correlated microRNA expression with treatment outcome. Methods: The gene expression profile of 164 miRNAs were compared for T-ALL/CD56+ (n=12) and T-ALL/CD56- (n=36) patients by Real-Time Quantitative PCR. Based on this analysis, we decided to evaluate miR-221 and miR-374 expression in individual leukemic and normal samples. Results: miR-221 and miR-374 were expressed at significantly higher levels in T-ALL/CD56+ than in T-ALL/CD56- cells and in leukemic blasts compared with normal thymocytes and peripheral blood (PB) T-cells. Age at diagnosis (15 or less vs grater than 15 years; HR: 2.19, 95% CI: 0.98-4.85; P=0.05), miR-221 expression level (median value as cut off in leukemic samples; HR: 3.17, 95% CI: 1.45-6.92; P=0.004), and the expression of CD56 (CD56- vs CD56+; HR: 2.99, 95% CI: 1.37-6.51; P=0.006) were predictive factors for shorter overall survival; whereas, only CD56 expression (HR: 2.73, 95% CI: 1.03-7.18; P=0.041) was associated with a shorter disease-free survival rate. Conclusions: miR-221 is highly expressed in T-ALL and its expression level may be associated with a poorer prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia is characterized by gene rearrangements that always involve the retinoic acid receptor alpha on chromosome 15. In the majority of patients t(15;17) is detected, which generates the promyelocytic leukemia gene/retinoic acid receptor alpha rearrangement. This rearrangement interacts with several proteins, including the native promyelocytic leukemia gene, thus causing its delocalization from the nuclear bodies, impairing its function. The immunofluorescence staining technique using the anti-PML antibody may be used to provide a rapid diagnosis and to immediately start therapy using all-trans retinoic acid. The experience of the International Consortium on Acute Promyelocytic Leukemia has demonstrated that early mortality was significantly reduced by adopting the immunofluorescence technique. All-trans retinoic acid combined with chemotherapy is the standard therapy; this promotes complete remission rates greater than 90% and cure rates of nearly 80%. However, early mortality is still an important limitation and hematologists must be aware of the importance of treating newly diagnosed acute promyelocytic leukemia as a medical emergency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. In order to explore, at high resolution, the frequency and size of alterations affecting this locus in adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further available and analyzed for 19 (19%) cases. CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The analysis at the time of relapse showed an almost significant increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 locus were found at very low level with only a non-synonymous substition in the exon 2 of CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014). The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive ALL. Deletions are frequently acquired at the leukemia progression and work as a poor prognostic marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pediatric acute myeloid leukemia (AML) is a molecularly heterogeneous disease that arises from genetic alterations in pathways that regulate self-renewal and myeloid differentiation. While the majority of patients carry recurrent chromosomal translocations, almost 20% of childhood AML do not show any recognizable cytogenetic alteration and are defined as cytogenetically normal (CN)-AML. CN-AML patients have always showed a great variability in response to therapy and overall outcome, underlining the presence of unknown genetic changes, not detectable by conventional analyses, but relevant for pathogenesis, and outcome of AML. The development of novel genome-wide techniques such as next-generation sequencing, have tremendously improved our ability to interrogate the cancer genome. Based on this background, the aim of this research study was to investigate the mutational landscape of pediatric CN-AML patients negative for all the currently known somatic mutations reported in AML through whole-transcriptome sequencing (RNA-seq). RNA-seq performed on diagnostic leukemic blasts from 19 pediatric CN-AML cases revealed a considerable incidence of cryptic chromosomal rearrangements, with the identification of 21 putative fusion genes. Several of the fusion genes that were identified in this study are recurrent and might have a prognostic and/or therapeutic relevance. A paradigm of that is the CBFA2T3-GLIS2 fusion, which has been demonstrated to be a common alteration in pediatric CN-AML, predicting poor outcome. Important findings have been also obtained in the identification of novel therapeutic targets. On one side, the identification of NUP98-JARID1A fusion suggests the use of disulfiram; on the other, here we describe alteration-activating tyrosine kinases, providing functional data supporting the use of tyrosine kinase inhibitors to specifically inhibit leukemia cells. This study provides new insights in the knowledge of genetic alterations underlying pediatric AML, defines novel prognostic markers and putative therapeutic targets, and prospectively ensures a correct risk stratification and risk-adapted therapy also for the “all-neg” AML subgroup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, few risk factors for childhood acute lymphoblastic leukemia (ALL) have been confirmed and the scientific literature is full of controversial "evidence." We examined if family characteristics, particularly maternal and paternal age and number of older siblings, were risk factors for childhood acute lymphoblastic leukemia (ALL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivors of childhood acute lymphoblastic leukemia (ALL) treated with radiotherapy are at risk for impaired fertility. Whether chemotherapy alone is also long-term gonadotoxic is unclear. We assessed gonadal function in 11 male ALL-survivors treated with the same chemotherapy regimen and compared sperm analysis to healthy men. While sex hormone levels were normal in all subjects, 5/11 survivors showed pathological sperm concentration and 4/11 a decreased total sperm count compared to WHO criteria. Compared to healthy controls, all quantitative parameters in semen analysis of survivors were decreased. This suggests that treatment with chemotherapeutic agents alone, even in moderate doses, might have a gonadotoxic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The known participation of Kruppel-like transcription factors (KLF) in cellular differentiation prompted us to investigate their expression in acute myeloid leukemia (AML) blast cells that are typically blocked in their differentiation. We determined the expression patterns of KLFs with a putative role in myeloid differentiation in a large cohort of primary AML patient samples, CD34+ progenitor cells and granulocytes from healthy donors. We found that KLF2, KLF3, KLF5 and KLF6 are significantly lower expressed in AML blast and CD34+ progenitor cells as compared to normal granulocytes. Moreover, we found markedly increased KLF levels in acute promyelocytic leukemia patients who received oral ATRA. Accordingly, we observed a strong induction of KLF5/6 upon ATRA-treatment in NB4 and HT93 APL but not in ATRA-resistant NB4-R cells. Lastly, knocking down KLF5 or KLF6 in NB4 cells significantly attenuated neutrophil differentiation. In conclusion, we found a significant repression of KLF transcription factors in primary AML samples as compared to mature neutrophils and further show that KLF5 and KLF6 are functionally involved in neutrophil differentiation of APL cells.