999 resultados para Accumulation rate, standard deviation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (rate, as the proximal cause of the event. However, the 3He[ET] technique indicates a previously unrecognized and extreme increase in sedimentation rate coincident with the return of climate proxies to pre-event values. The 3He[ET]-based age model thus suggests a far more rapid recovery from the climatic perturbation than previously proposed or predicted on the basis of the modern carbon cycle, and so may indicate additional or accelerated mechanisms of carbon removal from the ocean-atmosphere system during this period. 3He[ET] was also measured at ODP Site 1051 to test the validity of the Site 690 chronology. Comparison of these data sets seems to require removal of several tens of kyr of sediment within the climatic excursion at Site 1051, an observation consistent with sediment structures and previous age modeling efforts. The Site 1051 age model shows a ~30 kyr period in which climate proxies return toward pre-event values, after which they remain invariant for ~80 kyr. If this rise represents the recovery interval identified at Site 690, then the 3HeET-based age models of the two sites are in good agreement. However, alternative interpretations are possible, and work on less disrupted sites is required to evaluate the reliability of the proposed new chronology of the climate excursion. Regardless of these details, this work shows that the 3HeET technique can provide useful independent evidence for the development and testing of astronomically calibrated age models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined geodetic, geophysical and glaciological in situ measurements are interpreted regarding surface height changes over subglacial Lake Vostok and the local mass balance of the ice sheet at Vostok station. Repeated GPS observations spanning 5 years and long-term surface accumulation data show that the height of the lake surface has not changed over the observation period. The application of the mass conservation equation to purely observational data yields an ice mass balance for Vostok station close to equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.