970 resultados para Absolute permeability
Resumo:
The epithelial Na(+) channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na(+) absorption. The amiloride-sensitive ENaC is highly selective for Na(+) and Li(+) ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and the narrow ion-selective region of the pore. We have shown previously that mutations of the alphaS589 residue in the preM2 segment change the ion selectivity, making the channel permeant to K(+) ions. To understand the molecular basis of this important change in ionic selectivity, we have substituted alphaS589 with amino acids of different sizes and physicochemical properties. Here, we show that the molecular cutoff of the channel pore for inorganic and organic cations increases with the size of the amino acid residue at position alpha589, indicating that alphaS589 mutations enlarge the pore at the selectivity filter. Mutants with an increased permeability to large cations show a decrease in the ENaC unitary conductance of small cations such as Na(+) and Li(+). These findings demonstrate the critical role of the pore size at the alphaS589 residue for the selectivity properties of ENaC. Our data are consistent with the main chain carbonyl oxygens of the alphaS589 residues lining the channel pore at the selectivity filter with their side chain pointing away from the pore lumen. We propose that the alphaS589 side chain is oriented toward the subunit-subunit interface and that substitution of alphaS589 by larger residues increases the pore diameter by adding extra volume at the subunit-subunit interface.
Resumo:
Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.
Resumo:
BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.
Resumo:
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.
Resumo:
A generic LC-MS approach for the absolute quantification of undigested peptides in plasma at mid-picomolar levels is described. Nine human peptides namely, brain natriuretic peptide (BNP), substance P (SubP), parathyroid hormone 1-34 (PTH), C-peptide, orexines A and B (Orex-A and -B), oxytocin (Oxy), gonadoliberin-1 (gonadothropin releasing-hormone or luteinizing hormone-releasing hormone, LHRH) and α-melanotropin (α-MSH) were targeted. Plasma samples were extracted via a 2-step procedure: protein precipitation using 1vol of acetonitrile followed by ultrafiltration of supernatants on membranes with a MW cut-off of 30 kDa. By applying a specific LC-MS setup, large volumes of filtrates (e.g., 2×750 μL) were injected and the peptides were trapped on a 1mm i.d.×10 mm length C8 column using a 10× on-line dilution. Then, the peptides were back-flushed and a second on-line dilution (2×) was applied during the transfer step. The refocalized peptides were resolved on a 0.3mm i.d. C18 analytical column. Extraction recovery, matrix effect and limits of detection were evaluated. Our comprehensive protocol demonstrates a simple and efficient sample preparation procedure followed by the analysis of peptides with limits of detection in the mid-picomolar range. This generic approach can be applied for the determination of most therapeutic peptides and possibly for endogenous peptides with latest state-of-the-art instruments.
Resumo:
The buccal mucosal route offers several advantages but the delivery of certain drugs can be limited by low membrane permeability. This study investigated the buccal permeability properties of didanosine (ddI) and assessed the potential of ALOE VERA gel (AVgel) as a novel buccal permeation enhancer. Permeation studies were performed using Franz diffusion cells, and the drug was quantified by UV spectroscopy. Histomorphological evaluations were undertaken using light and transmission electron microscopy. The permeability of ddI was concentration-dependent, and it did not have any adverse effects on the buccal mucosae. A linear relationship (R (2) = 0.9557) between the concentrations and flux indicated passive diffusion as the mechanism of drug transport. AVgel at concentrations of 0.25 to 2 %w/v enhanced ddI permeability with enhancement ratios from 5.09 (0.25 %w/v) to 11.78 (2 %w/v) but decreased permeability at 4 and 6 %w/v. Ultrastructural analysis of the buccal mucosae treated with phosphate buffer saline pH 7.4 (PBS), ddI/PBS, and ddI/PBS/AVgel 0.5 %w/v showed cells with normal plasmalemma, well-developed cristae, and nuclei with regular nuclear envelopes. However, cells from 1, 2, and 6 %w/v AVgel-treated mucosae showed irregular nuclear outlines, increased intercellular spacing, and plasmalemma crenulations. This study demonstrates the potential of AVgel as a buccal permeation enhancer for ddI to improve anti-HIV and AIDS therapy.
Resumo:
Abstract OBJECTIVE Determining which is the most effective solution (heparin flush compared to 0.9% saline flush) for reducing the risk of occlusions in central venous catheters (CVC) in adults. METHOD The systematic review followed the principles proposed by the Cochrane Handbook; critical analysis, extraction and synthesis of data were performed by two independent researchers; statistical analysis was performed using the RevMan program 5.2.8. RESULTS Eight randomized controlled trials and one cohort study were included and the results of the meta-analysis showed no difference (RR=0.68, 95% CI=0.41-1.10; p=0.12). Analysis by subgroups showed that there was no difference in fully deployed CVC (RR=1.09, CI 95%=0.53-2.22;p=0.82); Multi-Lumen CVC showed beneficial effects in the heparin group (RR=0.53, CI 95%=0.29-0.95; p=0.03); in Double-Lumen CVC for hemodialysis (RR=1.18, CI 95%=0.08-17.82;p=0.90) and Peripherally inserted CVC (RR=0.14, CI 95%=0.01-2.60; p=0.19) also showed no difference. CONCLUSION Saline solution is sufficient for maintaining patency of the central venous catheter, preventing the risks associated with heparin administration.
Resumo:
In this paper we proose the infimum of the Arrow-Pratt index of absoluterisk aversion as a measure of global risk aversion of a utility function.We then show that, for any given arbitrary pair of distributions, thereexists a threshold level of global risk aversion such that all increasingconcave utility functions with at least as much global risk aversion wouldrank the two distributions in the same way. Furthermore, this thresholdlevel is sharp in the sense that, for any lower level of global riskaversion, we can find two utility functions in this class yielding oppositepreference relations for the two distributions.
Resumo:
Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible.
Resumo:
BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.
Resumo:
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Resumo:
Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.
Resumo:
Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n=40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group (n=40) scored 55.6% and took longer to fix their attention on the displaced object. The participants with an intellectual disability thus had a more accurate perception of spatial changes than controls. Interestingly, the ID participants were more reactive to object displacement than to removal of the object. In the specific test of novelty detection, however, the scores were similar, the two groups approaching 100% detection. Analysis of the strategies expressed by the ID group revealed that they engaged in more systematic object checking and were more sensitive than the control group to changes in the structure of the environment. Indeed, during the familiarisation phase, the "ID" group explored the collection of objects more slowly, and fixed their gaze for a longer time upon a significantly lower number of fixation points during visual sweeping.
Resumo:
We study the discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow, in 2D rock samples having mesoscopic heterogeneities and in the presence of strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by constant values, including the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.