996 resultados para Abnormalities, Human
Resumo:
In this article, the authors aim to present a critical review of recent MRI studies addressing white matter (WM) abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI), by searching PubMed and reviewing MRI studies evaluating subjects with AD or MCI using WM volumetric methods, diffusion tensor imaging and assessment of WM hyperintensities. Studies have found that, compared with healthy controls, AD and MCI samples display WM volumetric reductions and diffusion tensor imaging findings suggestive of reduced WM integrity. These changes affect complex networks relevant to episodic memory and other cognitive processes, including fiber connections that directly link medial temporal structures and the corpus callosum. Abnormalities in cortico-cortical and cortico-subcortical WM interconnections are associated with an increased risk of progression from MCI to dementia. It can be concluded that WM abnormalities are detectable in early stages of AD and MCI. Degeneration of WM networks causes disconnection among neural cells and the degree of such changes is related to cognitive decline. © 2013 2013 Expert Reviews Ltd.
Resumo:
BACKGROUND: Age-related loss in lower limb strength is related with impaired mobility. However, the association between decreased lower limb strength and gait biomechanical abnormalities is unclear. %In line with this, With respect to these statements, our study aimed to compare the maximum isokinetic voluntary strength (MIVS) of hip, knee and ankle of older women with and without history of falls. Also, we correlate the strength of each group with gait biomechanics. METHODS: The MIVS were assessed during concentric/concentric movements performed for hip, knee and ankle joints. Gait biomechanics (kinematic and electromyography) were assessed during 1-minute recorded during the volunteers walking on the treadmill at self-selected speed. Electromyographic signal was analyzed by the linear envelop after heel strike and before toe-off. The kinematic data were analyzed using the variables: step time, length and step width and ankle angle at heel strike, and hip angle at toe-off. RESULTS: In faller group, we found that a decreased hip abduction and adduction MIVS is associated with a higher tibialis anterior activation at initial stance (p =0.04 and r =-0.53 and p=0.04 and r=-0.52). CONCLUSION: Therefore, an impaired strength of hip could causes compensation in ankle stabilizer muscles activation at initial stance in older female fallers. © 2013 - IOS Press and the authors. All rights reserved.
Resumo:
There are few environmental studies using biomarkers for the species Atherinella brasiliensis in Brazil. In the present work, the presence of hepatic histopathological lesions and nuclear abnormalities in erythrocytes were investigated in A. brasiliensis from Lamberto, a beach under influence of domestic wastes and marine activities. For comparison, fish were also sampled in Puruba, a non-polluted beach, located in the northeastern of Sao Paulo State. The frequency of lesions found in liver was in higher numbers in individuals from Lamberto than Puruba beach. The most critical injuries observed in A. brasiliensis were the presence of necrotic areas, leucocytes infiltration and piknotic nucleus. A high occurrence of cells with vacuolization was also observed. The hepatic lesion index of the fish from Lamberto beach showed significant high values (I(org)=13) when compared with fish from Puruba beach (I(org)=7) suggesting the influence of the several human activities in the studied site. Notched and blebed nucleous were observed in this study, and significant differences were found between the studied sites. However, these differences did not reflect the total nuclear alterations.
Resumo:
Nuclear abnormalities in erythrocytes (NAE) were taken as biomarkers in the catfish Cathorops spixii (Ariidae) sampled in an estuary little affected by human activity (Cananeia) and in three regions (Santos Channel: SC, Santos Bay: SB and Sao Vicente Channel: SVC) of the Santos-Sao Vicente estuary impacted by various anthropogenic activities. Increases in NAE were observed in fish from SC and SVC sampled in the summer period as compared with specimens from the Cananeia estuary. These results suggest the presence of genotoxic compounds in these regions. However, the absence of significant differences in micronuclei frequency reflects slight mutagenic effects in these individuals. It is possible that the lower NAE frequency in specimens from SB might be associated with the greater remobilization and dilution of chemicals in this region. The low frequency of NAE in C. spixii from the Cananeia estuary is in accordance with the slight anthropogenic influence in this system, and may be suggestive of the absence of genotoxic and mutagenic effects in these organisms.
Resumo:
Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)
Resumo:
The nasopalatine region is composed of structures such as the vomeronasal organ and nasopalatine duct. The nasopalatine duct may provide the communication of the mouth to the nasal cavity in human fetuses and can be obliterated in an adult human. Knowledge on the development of the nasopalatine region and nasopalatine duct in humans is necessary for understanding the morphology and etiopathogenesis of lesions that occur in this region. Objective: The aim of the present study was to describe the morphological aspects of the nasopalatine region in human fetuses and correlate these aspects with the development of pathologies in this region. Material and Methods: Five human fetuses with no facial or palatine abnormalities were used for the acquisition of specimens from the nasopalatine region. After demineralization, the specimens were histologically processed. Histological cuts were stained with methylene blue to orient the cutting plane and hematoxylin-eosin for the descriptive histological analysis. Results: The age of the fetuses was 8.00, 8.25, 9.00 and 9.25 weeks, and it was not possible to determine the age in the last one. The incisive canal was observed in all specimens as an opening delimited laterally by the periosteum and connecting oral and nasal cavity. The nasopalatine duct is an epithelial structure with the greatest morphological variation, with either unilateral or bilateral occurrence and total patent, partial patent and islet forms. The vomeronasal organ is a bilateral epithelized structure located alongside the nasal septum above the incisive canal in all the fetuses. Conclusions: The incisive canal, nasopalatine duct and vomeronasal organ are distinct anatomic structures. The development of nasopalatine duct cysts may occur in all forms of the nasopalatine duct.
Resumo:
Nuclear abnormalities in erythrocytes (NAE) were taken as biomarkers in the catfish Cathorops spixii (Ariidae) sampled in an estuary little affected by human activity (Cananéia) and in three regions (Santos Channel: SC, Santos Bay: SB and São Vicente Channel: SVC) of the Santos-São Vicente estuary impacted by various anthropogenic activities. Increases in NAE were observed in fish from SC and SVC sampled in the summer period as compared with specimens from the Cananéia estuary. These results suggest the presence of genotoxic compounds in these regions. However, the absence of significant differences in micronuclei frequency reflects slight mutagenic effects in these individuals. It is possible that the lower NAE frequency in specimens from SB might be associated with the greater remobilization and dilution of chemicals in this region. The low frequency of NAE in C. spixii from the Cananéia estuary is in accordance with the slight anthropogenic influence in this system, and may be suggestive of the absence of genotoxic and mutagenic effects in these organisms.
Resumo:
Objectives: Neurofunctional alterations are correlates of vulnerability to psychosis, as well as of the disorder itself. How these abnormalities relate to different probabilities for later transition to psychosis is unclear. We investigated vulnerability- versus disease-related versus resilience biomarkers of psychosis during working memory (WM) processing in individuals with an at-risk mental state (ARMS). Experimental design: Patients with “first-episode psychosis” (FEP, n = 21), short-term ARMS (ARMS-ST, n = 17), long-term ARMS (ARMS-LT, n = 16), and healthy controls (HC, n = 20) were investigated with an n-back WM task. We examined functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) data in conjunction using biological parametric mapping (BPM) toolbox. Principal observations: There were no differences in accuracy, but the FEP and the ARMS-ST group had longer reaction times compared with the HC and the ARMS-LT group. With the 2-back > 0-back contrast, we found reduced functional activation in ARMS-ST and FEP compared with the HC group in parietal and middle frontal regions. Relative to ARMS-LT individuals, FEP patients showed decreased activation in the bilateral inferior frontal gyrus and insula, and in the left prefrontal cortex. Compared with the ARMS-LT, the ARMS-ST subjects showed reduced activation in the right inferior frontal gyrus and insula. Reduced insular and prefrontal activation was associated with gray matter volume reduction in the same area in the ARMS-LT group. Conclusions: These findings suggest that vulnerability to psychosis was associated with neurofunctional alterations in fronto-temporo-parietal networks in a WM task. Neurofunctional differences within the ARMS were related to different duration of the prodromal state and resilience factors
Resumo:
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.
Resumo:
BACKGROUND: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. METHODS: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. MAIN RESULTS: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. CONCLUSION: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.
Resumo:
PURPOSE: To evaluate the expression and presence of surfactant protein (SP) A and SP-D in the lacrimal apparatus, at the ocular surface, and in tears in healthy and pathologic states. METHODS: Expression of mRNA for SP-A and SP-D was analyzed by RT-PCR in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal ducts as well as in a spontaneously immortalized conjunctival epithelial cell line (HCjE; IOBA-NHC) and a SV40-transfected cornea epithelial cell line (HCE). Deposition of SP-A and SP-D was determined by Western blot, dot blot, and immunohistochemistry in healthy tissues, in tears, aqueous humor, and in sections of different corneal abnormalities (keratoconus, herpetic keratitis, and Staphylococcus aureus-based ulceration). Cell lines were stimulated with different cytokines and bacterial components and were analyzed for the production of SP-A and SP-D by immunohistochemistry. RESULTS: The presence of SP-A and SP-D on mRNA and protein levels was evidenced in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal duct samples. Moreover, both proteins were present in tears but were absent in aqueous humor. Immunohistochemistry revealed the production of both peptides by acinar epithelial cells of the lacrimal gland and epithelial cells of the conjunctiva and nasolacrimal ducts, whereas goblet cells revealed no reactivity. Healthy cornea revealed weak reactivity on epithelial surface cells only. In contrast, SP-A and SP-D revealed strong reactivity in patients with herpetic keratitis and corneal ulceration surrounding lesions and in several immigrated defense cells. Reactivity in corneal epithelium and endothelium was also seen in patients with keratoconus. Cell culture experiments revealed that SP-A and SP-D are produced by both epithelial cell lines without and after stimulation with cytokines and bacterial components. CONCLUSIONS: These results show that SP-A, in addition to SP-D, is a peptide of the tear film. Based on the known direct and indirect antimicrobial effects of collectins, the surfactant-associated proteins A and D seem to be involved in several ocular surface diseases.
Resumo:
Carbohydrate-deficient glycoprotein syndrome (CDGS) represents a class of genetic diseases characterized by abnormal N-linked glycosylation. CDGS patients show a large number of glycoprotein abnormalities resulting in dysmorphy, encephalopathy, and other organ disorders. The majority of CDGSs described to date are related to an impaired biosynthesis of dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum. Recently, we identified in four related patients a novel type of CDGS characterized by an accumulation of dolichyl pyrophosphate-linked Man9GlcNAc2. Elaborating on the analogy of this finding with the phenotype of alg5 and alg6 Saccharomyces cerevisiae strains, we have cloned and analyzed the human orthologs to the ALG5 dolichyl phosphate glucosyltransferase and ALG6 dolichyl pyrophosphate Man9GlcNAc2 alpha1,3-glucosyltransferase in four novel CDGS patients. Although ALG5 was not altered in the patients, a C-->T transition was detected in ALG6 cDNA of all four CDGS patients. The mutation cosegregated with the disease in a Mendelian recessive manner. Expression of the human ALG5 and ALG6 cDNA could partially complement the respective S. cerevisiae alg5 and alg6 deficiency. By contrast, the mutant ALG6 cDNA of CDGS patients failed to revert the hypoglycosylation observed in alg6 yeasts, thereby proving a functional relationship between the alanine to valine substitution introduced by the C-->T transition and the CDGS phenotype. The mutation in the ALG6 alpha1,3-glucosyltransferase gene defines an additional type of CDGS, which we propose to refer to as CDGS type-Ic.
Resumo:
5-aza-2'-deoxycytidine (DAC) is a cytidine analogue that strongly inhibits DNA methylation, and was recently approved for the treatment of myelodysplastic syndromes (MDS). To maximize clinical results with DAC, we investigated its use as an anti-cancer drug. We also investigated mechanisms of resistance to DAC in vitro in cancer cell lines and in vivo in MDS patients after relapse. We found DAC sensitized cells to the effect of 1-β-D-Arabinofuranosylcytosine (Ara-C). The combination of DAC and Ara-C or Ara-C following DAC showed additive or synergistic effects on cell death in four human leukemia cell lines in vitro, but antagonism in terms of global methylation. RIL gene activation and H3 lys-9 acetylation of short interspersed elements (Alu). One possible explanation is that hypomethylated cells are sensitized to cell killing by Ara-C. Turning to resistance, we found that the IC50 of DAC differed 1000 fold among and was correlated with the dose of DAC that induced peak hypomethylation of long interspersed nuclear elements (LINE) (r=0.94, P<0.001), but not with LINE methylation at baseline (r=0.05, P=0.97). Sensitivity to DAC did not significantly correlate with sensitivity to another hypomethylating agent 5-azacytidine (AZA) (r=0.44, P=0.11). The cell lines most resistant to DAC had low dCK, hENT1, and hENT2 transporters and high cytosine deaminase (CDA). In an HL60 leukemia cell line, resistance to DAC could be rapidly induced by drug exposure, and was related to a switch from monoallelic to biallelic mutation of dCK or a loss of wild type DCK allele. Furthermore, we showed that DAC induced DNA breaks evidenced by histone H2AX phosphorylation and increased homologous recombination rates 7-10 folds. Finally, we found there were no dCK mutations in MDS patients after relapse. Cytogenetics showed that three of the patients acquired new abnormalities at relapse. These data suggest that in vitro spontaneous and acquired resistance to DAC can be explained by insufficient incorporation of drug into DNA. In vivo resistance to DAC is likely due to methylation-independent pathways such as chromosome changes. The lack of cross resistance between DAC and AZA is of potential clinical relevance, as is the combination of DAC and Ara-C. ^
Resumo:
Neural tube defects including spina bifida meningomyelocele (SBMM) are common malformations of the brain and spinal cord, and include all abnormalities resulting from lack of closure of the developing neural tube during embryological development.^ The specific aims of this study were to determine if single nucleotide polymorphic variants (SNPs) in the folate/homocysteine metabolic pathway genes confer a risk for NTD susceptibility within this SBMM population.^ In completion of the first specific aim, two novel SNPs were identified in the FOLR1 gene in Chromosome 11of patients including one in non-coding exon 1 with a C → T transition at nucleotide position 71578317 and another in non-coding exon 3 with a T → G transversion at nucleotide position 71579123. It will be important to determine if these variants are present in the respective parents of these individuals. If they are in fact de novo variants, then these SNPs may be more likely to contribute to the birth defect.^ The second project aim was to analyze genotypes associated with SBMM risk by transmission disequilibrium tests (TDT) and association was detected on several SNPs across the folate metabolic pathway genes in this population. SNPs with significant RC-TDT values were found within the DHFR gene (rs1650723), the MTRR gene (rs327592), the FOLR2 gene (rs13908), four tightly linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987, rs7926360) and a variant in the SLC19A1 gene (rs1888530). The product of each of these genes performs a vital function in the folate metabolic pathway. It is conceivable, therefore, that if the individual SNP or SNPs can be proven to perturb the function in some way that they may be involved in the disruption of folate metabolism and in the resulting birth defect. Validating the results of this study in other independent populations will further strengthen the evidence that dysfunction of folate enzymes and receptors may confer SBMM risk in humans. ^