971 resultados para ATTACHMENT PROTEIN (G)
Resumo:
The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.
Resumo:
The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.
Resumo:
Ribbon synapses of the vertebrate retina are specialized synapses that release neurotransmitter by synaptic vesicle exocytosis in a manner that is proportional to the level of depolarization of the cell. This release property is different from conventional neurons, in which the release of neurotransmitter occurs as a short-lived burst triggered by an action potential. Synaptic vesicle exocytosis is a calcium regulated process that is dependent on a set of interacting synaptic proteins that form the so-called SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex. Syntaxin 3B has been identified as a specialized SNARE molecule in ribbon synapses of the rodent retina. However, the best physiologically-characterized neuron that forms ribbon-style synapses is the rod-dominant or Mb1 bipolar cell of the goldfish retina. We report here the molecular characterization of syntaxin 3B from the goldfish retina. Using a combination of reverse transcription (RT) polymerase chain reaction (PCR) and immunostaining with a specific antibody, we show that syntaxin 3B is highly enriched in the plasma membrane of bipolar cell synaptic terminals of the goldfish retina. Using membrane capacitance measurements we demonstrate that a peptide derived from goldfish syntaxin 3B inhibits synaptic vesicle exocytosis. These experiments demonstrate that syntaxin 3B is an important factor for synaptic vesicle exocytosis in ribbon synapses of the vertebrate retina.
Resumo:
Previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the retina contain the related isoform syntaxin 3. In addition to its localization in ribbon synapses, syntaxin 3 is also found in nonneuronal cells, where it has been implicated in the trafficking of transport vesicles to the apical plasma membrane of polarized cells. The syntaxin 3 gene codes for four different splice forms, syntaxins 3A, 3B, 3C, and 3D. We demonstrate here by using analysis of EST databases, RT-PCR, in situ hybridization, and Northern blot analysis that cells in the mouse retina express only syntaxin 3B. In contrast, nonneuronal tissues, such as kidney, express only syntaxin 3A. The two major syntaxin isoforms (3A and 3B) have an identical N-terminal domain but differ in the C-terminal half of the SNARE domain and the C-terminal transmembrane domain. These two domains are thought to be directly involved in synaptic vesicle fusion. The interaction of syntaxin 1A and syntaxin 3B with other synaptic proteins was examined. We found that both proteins bind Munc18/N-sec1 with similar affinity. In contrast, syntaxin 3B had a much lower binding affinity for the t-SNARE SNAP25 compared with syntaxin 1A. By using an in vitro fusion assay, we could demonstrate that vesicles containing syntaxin 3B and SNAP25 could fuse with vesicles containing synaptobrevin2/VAMP2, demonstrating that syntaxin 3B can function as a t-SNARE.
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
Introduction. Food frequency questionnaires (FFQ) are used study the association between dietary intake and disease. An instructional video may potentially offer a low cost, practical method of dietary assessment training for participants thereby reducing recall bias in FFQs. There is little evidence in the literature of the effect of using instructional videos on FFQ-based intake. Objective. This analysis compared the reported energy and macronutrient intake of two groups that were randomized either to watch an instructional video before completing an FFQ or to view the same instructional video after completing the same FFQ. Methods. In the parent study, a diverse group of students, faculty and staff from Houston Community College were randomized to two groups, stratified by ethnicity, and completed an FFQ. The "video before" group watched an instructional video about completing the FFQ prior to answering the FFQ. The "video after" group watched the instructional video after completing the FFQ. The two groups were compared on mean daily energy (Kcal/day), fat (g/day), protein (g/day), carbohydrate (g/day) and fiber (g/day) intakes using descriptive statistics and one-way ANOVA. Demographic, height, and weight information was collected. Dietary intakes were adjusted for total energy intake before the comparative analysis. BMI and age were ruled out as potential confounders. Results. There were no significant differences between the two groups in mean daily dietary intakes of energy, total fat, protein, carbohydrates and fiber. However, a pattern of higher energy intake and lower fiber intake was reported in the group that viewed the instructional video before completing the FFQ compared to those who viewed the video after. Discussion. Analysis of the difference between reported intake of energy and macronutrients showed an overall pattern, albeit not statistically significant, of higher intake in the video before versus the video after group. Application of instructional videos for dietary assessment may require further research to address the validity of reported dietary intakes in those who are randomized to watch an instructional video before reporting diet compared to a control groups that does not view a video.^
Resumo:
Ribbon synapses are found in sensory systems and are characterized by ‘ribbon-like’ organelles that tether synaptic vesicles. The synaptic ribbons co-localize with sites of calcium entry and vesicle fusion, forming ribbon-style active zones. The ability of ribbon synapses to maintain rapid and sustained neurotransmission is critical for vision, hearing and balance. At retinal ribbon synapses, three vesicle pools have been proposed. A rapid pool of vesicles that are docked at the plasma membrane, and whose fusion is limited only by calcium entry, a releasable pool of ATP-primed vesicles whose size also correlates with the number of ribbon-tethered vesicles, and a reserve pool of non-ribbon-tethered cytoplasmic vesicles. However evidence of vesicle fusion at sites away from ribbon-style active zones questions this organization. Another fundamental question underlying the mechanism of vesicle fusion at these synapses is the role of SNARE (Soluble N-ethylmaleimide sensitive factor Attachment Protein Receptor) proteins. Vesicles at conventional neurons undergo SNARE complex-mediated fusion. However a recent study has suggested that ribbon synapses involved in hearing can operate independently of neuronal SNAREs. We used the well-characterized goldfish bipolar neuron to investigate the organization of vesicle pools and the role of SNARE proteins at a retinal ribbon synapse. We blocked functional refilling of the releasable pool and then stimulated bipolar terminals with brief depolarizations that triggered the fusion of the rapid pool of vesicles. We found that the rapid pool draws vesicles from the releasable pool and that both pools undergo release at ribbon-style active zones. To assess the functional role of SNARE proteins at retinal ribbon synapses, we used peptides derived from SNARE proteins that compete with endogenous proteins for SNARE complex formation. The SNARE peptides blocked fusion of reserve vesicles but not vesicles in the rapid and releasable pools, possibly because both rapid and releasable vesicles were associated with preformed SNARE complexes. However, an activity-dependent block in refilling of the releasable pool was seen, suggesting that new SNARE complexes must be formed before vesicles can join a fusion-competent pool. Taken together, our results suggest that SNARE complex-mediated exocytosis of serially-organized vesicle pools at ribbon-style active zones is important in the neurotransmission of vision.
Resumo:
We have investigated the relationships between the apical sorting mechanism using lipid rafts and the soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) machinery, which is involved in membrane docking and fusion. We first confirmed that anti-alpha-SNAP antibodies inhibit the apical pathway in Madin– Darby canine kidney (MDCK) cells; in addition, we report that a recombinant SNAP protein stimulates the apical transport whereas a SNAP mutant inhibits this transport step. Based on t-SNARE overexpression experiments and the effect of botulinum neurotoxin E, syntaxin 3 and SNAP-23 have been implicated in apical membrane trafficking. Here, we show in permeabilized MDCK cells that antisyntaxin 3 and anti-SNAP-23 antibodies lower surface delivery of an apical reporter protein. Moreover, using a similar approach, we show that tetanus toxin-insensitive, vesicle-associated membrane protein (TI-VAMP; also called VAMP7), a recently described apical v-SNARE, is involved. Furthermore, we show the presence of syntaxin 3 and TI-VAMP in isolated apical carriers. Polarized apical sorting has been postulated to be mediated by the clustering of apical proteins into dynamic sphingolipid-cholesterol rafts. We provide evidence that syntaxin 3 and TI-VAMP are raft-associated. These data support a raft-based mechanism for the sorting of not only apically destined cargo but also of SNAREs having functions in apical membrane-docking and fusion events.
Resumo:
In the last decade, several monomeric and heterotrimeric guanine nucleotide binding proteins have been identified to associate with secretory vesicles and to be implicated in exocytosis. Vesicle volume also has been proposed to play a regulatory role in secretory vesicle fusion at the plasma membrane. However, the molecular mechanism of function of the guanine nucleotide binding proteins and of the regulation of secretory vesicle volume in the exocytotic process remains unclear. In this study, we report association of the secretory vesicle membrane with the α subunit of a heterotrimeric GTP binding protein Gαi3 and implicate its involvement in vesicle swelling. Using an atomic force microscope in combination with confocal microscopy, we were able to study the dynamics of isolated zymogen granules, the secretory vesicles in exocrine pancreas. Exposure of zymogen granules to GTP resulted in a 15–25% increase in vesicle height as measured by the atomic force microscope and a similar increase in vesicle diameter as determined by confocal microscopy. Mas7, an active mastoparan analog known to stimulate Gi proteins, was found to stimulate the GTPase activity of isolated zymogen granules and cause swelling. Increase in vesicle size in the presence of GTP, NaF, and Mas7 were irreversible and KCl-sensitive. Ca2+ had no effect on zymogen granule size. Taken together, the results indicate that Gαi3 protein localized in the secretory vesicle membrane mediates vesicle swelling, a potentially important prerequisite for vesicle fusion at the cell plasma membrane.
Resumo:
In an attempt to define the mechanism of insulin-regulated glucose transporter 4 (Glut4) translocation, we have developed an in vitro reconstitution assay. Donor membranes from 3T3-L1 adipocytes transfected with mycGlut4 were incubated with plasma membrane (PM) from nontransfected 3T3-L1 cells, and the association was assessed by using two types of centrifugation assays. Association of mycGlut4 vesicles derived from donor membranes with the PM was concentration-, temperature-, time-, and Ca2+-dependent but ATP-independent. Addition of a syntaxin 4 fusion protein produced a biphasic response, increasing association at low concentration and inhibiting association at higher concentrations. PM from insulin-stimulated cells showed an enhanced association as compared with those from untreated cells. Use of donor membranes from insulin-stimulated cells further enhanced the association and also enhanced association to the PM from isolated rat adipocytes. Addition of cytosol, GTP, or guanosine 5′-[γ-thio]triphosphate decreased the association. In summary, insulin-induced Glut4 translocation can be reconstituted in vitro to a limited extent by using isolated membranes. This association appears to involve protein–protein interactions among the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. Finally, the ability of insulin to enhance association depends on insulin-induced changes in the PM and, to a lesser extent, in the donor membranes.
Resumo:
Specificity of vesicular transport is determined by pair-wise interaction between receptors (SNAP receptors or SNAREs) associated with a transport vesicle and its target membrane. Two additional factors, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (SNAP) are ubiquitous components of vesicular transport pathways. However, the precise role they play is not known. On the basis that NSF and SNAP can be recruited to preformed SNARE complexes, it has been proposed that NSF- and SNAP-containing complexes are formed after SNARE-dependent docking of transport vesicles. This would enable ATPase-dependent complex disassembly to be coupled directly to membrane fusion. Alternatively, binding and release of NSF/SNAP may occur before vesicle docking, and perhaps be involved in the activation of SNAREs. To gain more information about the point at which so-called 20S complexes form during the transport vesicle cycle, we have examined NSF/SNAP/SNARE complex turnover on clathrin-coated vesicle–derived membranes in situ. This has been achieved under conditions in which the extent of membrane docking can be precisely monitored. We demonstrate by UV-dependent cross-linking experiments, coupled to laser light-scattering analysis of membranes, that complexes containing NSF, SNAP, and SNAREs will form and dissociate on the surface of undocked transport vesicles.
Resumo:
Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.
Resumo:
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by α-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.
Resumo:
SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] proteins are essential for membrane fusion and are conserved from yeast to humans. Sequence alignments of the most conserved regions were mapped onto the recently solved crystal structure of the heterotrimeric synaptic fusion complex. The association of the four α-helices in the synaptic fusion complex structure produces highly conserved layers of interacting amino acid side chains in the center of the four-helix bundle. Mutations in these layers reduce complex stability and cause defects in membrane traffic even in distantly related SNAREs. When syntaxin-4 is modeled into the synaptic fusion complex as a replacement of syntaxin-1A, no major steric clashes arise and the most variable amino acids localize to the outer surface of the complex. We conclude that the main structural features of the neuronal complex are highly conserved during evolution. On the basis of these features we have reclassified SNARE proteins into Q-SNAREs and R-SNAREs, and we propose that fusion-competent SNARE complexes generally consist of four-helix bundles composed of three Q-SNAREs and one R-SNARE.
Resumo:
We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules >20 Å and that transcytosis is an N-ethylmaleimide–sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a complete set of fusion and targeting proteins is present in the endothelium; 2) whether they are organized in multimolecular complexes as in neurons; and 3) whether the endothelial multimolecular complexes differ from their neuronal counterparts, because of their specialized role in transcytosis. To generate the complexes, we have used myc-NSF, cultured pulmonary endothelial cells, and rat lung cytosol and membrane preparations; to detect them we have applied coimmunoprecipitation with myc antibodies; and to characterize them we have used velocity sedimentation and cross-linking procedures. We have found that both cytosolic and membrane fractions contain complexes that comprise beside soluble NSF attachment proteins and SNAREs (soluble NSF attachment protein receptor), rab 5, dynamin, caveolin, and lipids. By immunogold labeling and negative staining we have detected in these complexes, myc-NSF, syntaxin, dynamin, caveolin, and endogenous NSF. Similar complexes are formed by endogenous NSF. The results indicate that complexes with a distinct protein–lipid composition exist and suggest that they participate in targeting, fusion, and fission of caveolae with the endothelial plasmalemma.