922 resultados para ASPECT-RATIO
Resumo:
We present an experimental and numerical study on the influence that particle aspect ratio has on the mechanical and structural properties of granular packings. For grains with maximal symmetry (squares), the stress propagation in the packing localizes forming chainlike forces analogous to the ones observed for spherical grains. This scenario can be understood in terms of stochastic models of aggregation and random multiplicative processes. As the grains elongate, the stress propagation is strongly affected. The interparticle normal force distribution tends toward a Gaussian, and, correspondingly, the force chains spread leading to a more uniform stress distribution reminiscent of the hydrostatic profiles known for standard liquids
Resumo:
Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
The Greene County, Iowa overlay project, completed in October 1973, was inspected on October 16 & 17, 1978 After five years of service The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 t o 100. The rating was conducted by the original members of the Project Planning Committee, Iowa DOT, Iowa Counties, Federal Highway Administration, University of Illinois and industry representatives . In all , there were 23 representatives who rated this project . The 23 values were then averaged to provide a final rating number for each section. The highest panel rating (90) was assigned to the 5-inch thick , deformed barre in forced PCC sections ; an 86t o a 3-inch thick , 160 lbs. of fiber and 600 lbs . of cement on a partial bonded surface ; an 84 to the 4-inch CRC with elastic joints (bonded) and an 84 to a 4-inch mesh reinforce section. One of the major factors influencing performance appears t o be the thickness. In the fibrous concrete overlay, The greatest influences appears t o be the fiber content. Overlay Sections containing 160 1b/yd3 of Fiber are, in almost all cases , outperforming those c o n t a i n i n g 60 or 100. It is obvious at This time meth at the 3-inch thick fibrous concrete overlays are, in general, out performing the 2-inch thick sections. The performance of the fibrous concrete the overlay appears to be favorably influenced by: (1) The use of higher a spectra fiber (0.025 x 2.5 i n c h e s ) v e r s u s (0.010 x 0.022 x 1.0 inches) (2) The use of a lower cement c o n t e n t ( 600 versus 750 1b/yd3) However, The set less well defined and the improvements in overlay performance attributed to high aspect ratio fibers and low cement contents.
Resumo:
Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.
Resumo:
Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.
Resumo:
The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.
Resumo:
In spite of numerous applications of carbon nanofibers (CNFs) in a variety of fields, the potential release of airborne CNF during their special application, which could lead to workers or end-users exposure, has not been well investigated. In this study, the potential release of CNF from an organic vapour respirator cartridge was evaluated by carbon analysis and microscopy analysis. The cartridge consisted of an AC (Activated Carbon)/CNF composite adsorbent and different types of particulate filters. The composite adsorbent CNF were prepared by chemical vapour deposition (CVD). Air was passed through the prepared cartridge for 12 hours at 12 l/min and particles were collected on sampling filters suitable for measuring organic and elemental carbon (OC/EC) by carbon analysis based on the NIOSH 5040 method. Breakthrough of CNFs was also checked by scanning and transmission electron microscopy (SEM/TEM). This study found only minimal amounts of released elemental carbon while passing the air through the cartridge. Meanwhile TEM photos showed a few CNF structures for AC/CNF composite adsorbents which were not in the critical range in terms of length, aspect ratio, or number. [Authors]
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites
Resumo:
Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites
Resumo:
One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens
Resumo:
The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.