359 resultados para ARGO
Resumo:
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.
Resumo:
Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime Bay of Bengal. The SST oscillations are forced mainly by surface heat flux associated with the active break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from three Argo floats with 5 day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal. About 95% of Argo profiles show a shallow halocline, with substantial variability of mixed layer salinity. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to lateral advection rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. Large fluctuations in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments.
Resumo:
Abstract (The socio-onomastic approach and translation): The article adopts an onomastic perspective on the translation, and highlights the challenges posed by the given names. The newer socio-onomastic research has drawn attention to the emotive, appealing, ideological and integrative functions of the names, showing strong links with both the period and with society. In the article this is exemplified with ship names from the nineteenth century, which partly reflect classicism (Argo, Hercules, Juno, Neptunus) and national romanticism (Aallotar, Aino, Sampo, Wellamo). A special challenge is posed by the transparent names that evoke the actual words used, such as Penningdraken ('Money Dragon'), a ship that brought big money, and Människoätaren ('The man killer'), a ship where many sailors lost their lives. Names raise time-bound and culture-bound associations and the translator should be able to interpret the names as an embodiment of the society and the culture from which they originate.
Resumo:
Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.
Resumo:
PICES science – 2006 (pdf, 0.1 Mb) 2006 Wooster Award (pdf, 0.1 Mb) Thank you note from the Past-Chairman of PICES (pdf, 0.1 Mb) A comparison of regional mechanisms for fish production: Ecosystem perspectives (pdf, 0.3 Mb) 2006 CREAMS/PICES international workshop and summer school (pdf, 0.2 Mb) PICES Calendar (pdf, 0.2 Mb) 2006 Harmful Algal Bloom Section annual workshop (pdf, 0.1 Mb) 2006 PICES Workshop on “Modeling iron biogeochemistry and ocean ecosystems” (pdf, 0.1 Mb) Strolling through the NEMURO ecosystem model (pdf, 0.1 Mb) Climate and marine birds and mammals in the North Pacific (pdf, 0.2 Mb) Photo highlights of the PICES Fifteenth Annual Meeting (pdf, 3.5 Mb) Recent trends in waters of the subarctic NE Pacific: Cooler and fresher in summer of 2006 (pdf, 0.2 Mb) The state of the western North Pacific in the first half of 2006 (pdf, 0.3 Mb) Latest and upcoming PICES publications (pdf, 0.3 Mb) A seven-year effort of the PICES CCCC MODEL Task Team culminates in a dedicated issue of Ecological Modelling (pdf, 0.1 Mb) Japan joins PICES Marine Metadata Federation (pdf, 0.3 Mb) Argo: A 2006 status report (pdf, 0.3 Mb) New Chairmen in PICES (pdf, 0.2 Mb) PICES Interns (pdf, 0.2 Mb)
Resumo:
Cover [pdf, 0.2 Mb] Climate, biodiversity and ecosystems of the North Pacific [pp. 1-2] [pdf, 0.2 Mb] The state of the western North Pacific in the second half of 2000 [pp. 3-5] [pdf, 0.8 Mb] The status of the Bering Sea: June – December 2000 [pp. 6-7] [pdf, 1.5 Mb] The state of the eastern North Pacific since autumn 2000 [p. 8] [pdf, 0.3 Mb] Korean Yellow Sea Large Marine Ecosystem Program [pp. 9-12] [pdf, 0.5 Mb] Past and ongoing Mexican ecosystem research in the northeast Pacific Ocean [pp. 13-15] [pdf, 0.3 Mb] Vera Alexander [pp. 16-19] [pdf, 1.0 Mb] North Pacific CO2 data for the new millennium [pp. 20-21] [pdf, 0.3 Mb] PICES Higher Trophic Level Modelling Workshop [pp. 22-23] [pdf, 0.4 Mb] Argo Science Team 3rd Meeting (AST-3) [pp. 24-25] [pdf, 0.3 Mb] 2001 coast ocean / salmon ecosystem event [p. 26-27] [pdf, 0.3 Mb] Shifts in zooplankton abundance and species composition off central Oregon and southwestern British Columbia [pp. 28-29] [pdf, 0.3 Mb] The CLIVAR - Pacific Workshop [p. 30] [pdf, 0.2 Mb] PICES dialogue with Mexican scientists [p. 31] [pdf, 0.2 Mb] Announcements [p. 32] [pdf, 0.2 Mb]
Resumo:
Beyond El Nino Conference The status of the Bering Sea: June - December, 1999 The state of the western North Pacific in the second half of 1999 The state of the eastern North Pacific since autumn 1999 Project Argo Report of the ICES Zooplankton Ecology Working Group/PICES meeting Shark abundance increases in the Gulf of Alaska PICES Lower Trophic Level Modeling Workshop, Nemuro On the third meeting of the LMR-GOOS Panel Ocean Ecology of Juvenile Salmonids along the North American Coast
Resumo:
Major Outcomes from the 2009 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) The FUTURE is Here (pdf, 0.1 Mb) PICES Harmful Algal Bloom International Seafood Safety Project (pdf, 0.3 Mb) PICES at the 2009 GLOBEC Open Science Meeting (pdf, 0.4 Mb) Modeling Ecosystems and Ocean Processes Workshop (pdf, 0.1 Mb) Krill Biology and Ecology Workshop (pdf, 0.1 Mb) Polar and Sub-Polar Marine Ecosystems Workshop (pdf, 0.4 Mb) Biogeochemistry of the Oceans in a Changing Climate Workshop (pdf, 0.1 Mb) Continuous Plankton Recorder Surveys of the Global Oceans (pdf, 0.4 Mb) Plankton Phenology Workshop (pdf, 0.2 Mb) Workshop on “Climate Impact on Ecosystem Dynamics of Marginal Seas” (pdf, 0.1 Mb) Erratum (pdf, 0.4 Mb) The State of the Western North Pacific in the Second Half of 2008 (pdf, 0.2 Mb) State of the Northeast Pacific into early 2009 (pdf, 0.1 Mb) Current Status of the Bering Sea Ecosystem (pdf, 0.1 Mb) 2009 Salmon Forecasting Forum (pdf, 0.3 Mb) The Third Argo Science Workshop: “The Future of Argo” (pdf, 0.1 Mb) 2009 ESSAS Annual Science Meeting (pdf, 0.1 Mb) A Visit Fit for an Emperor and Empress of Japan (pdf, 0.9 Mb)
Resumo:
Many studies have been made of the effects of oil on marine invertebrates, plants (marine algae and phytoplankton), and vertebrates such as seabirds and marine mammals. An excellent review of these findings, which includes some references to fish and pathological effects of aromatic hydrocarbons, has been published by the Royal Society, London (Clark, 1982). That review dealt with the environmental effects of such major oil spills or releases such as those by the tankers Torry Canyon (119,000 t) on the south coast of England, Metula (50-56,000 t) in the Straits of Magellan, Argo Merchant (26,000 t) off Cape Cod, and the super tanker Amoco Cadiz (223,000 t) on the coast of northern Brittany. Those spills were studied to determine their effect on living resources. In contrast there are few references on the impact of oil spills on pelagic fishery resources.
Resumo:
Objectives included a desk-top feasibility study to explore opportunities to adapt the Scientific Educational Resources and Experience Associated with the Deployment of Argo profiling floats in the South Pacific Ocean (SEREAD) to BOBLME country schools.The programme included teacher resources on climate change and facilitating interactions between scientists, students and teachers.
Resumo:
With long-term marine surveys and research, and especially with the development of new marine environment monitoring technologies, prodigious amounts of complex marine environmental data are generated, and continuously increase rapidly. Features of these data include massive volume, widespread distribution, multiple-sources, heterogeneous, multi-dimensional and dynamic in structure and time. The present study recommends an integrative visualization solution for these data, to enhance the visual display of data and data archives, and to develop a joint use of these data distributed among different organizations or communities. This study also analyses the web services technologies and defines the concept of the marine information gird, then focuses on the spatiotemporal visualization method and proposes a process-oriented spatiotemporal visualization method. We discuss how marine environmental data can be organized based on the spatiotemporal visualization method, and how organized data are represented for use with web services and stored in a reusable fashion. In addition, we provide an original visualization architecture that is integrative and based on the explored technologies. In the end, we propose a prototype system of marine environmental data of the South China Sea for visualizations of Argo floats, sea surface temperature fields, sea current fields, salinity, in-situ investigation data, and ocean stations. An integration visualization architecture is illustrated on the prototype system, which highlights the process-oriented temporal visualization method and demonstrates the benefit of the architecture and the methods described in this study.
Resumo:
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.
Resumo:
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12A degrees x1/12A degrees) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.
Resumo:
Eddies are frequently observed in the northeastern South China Sea (SCS). However, there have been few studies on vertical structure and temporal-spatial evolution of these eddies. We analyzed the seasonal Luzon Warm Eddy (LWE) based on Argo float data and the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The analysis shows that the LWE extends vertically to more than 500 m water depth, with a higher temperature anomaly of 5A degrees C and lower salinity anomaly of 0.5 near the thermocline. The current speeds of the LWE are stronger in its uppermost 200 m, with a maximum speed of 0.6 m/s. Sometimes the LWE incorporates mixed waters from the Kuroshio Current and the SCS, and thus has higher thermohaline characteristics than local marine waters. Time series of eddy kinematic parameters show that the radii and shape of the LWE vary during propagation, and its eddy kinetic energy follows a normal distribution. In addition, we used the empirical orthogonal function (EOF) here to analyze seasonal characteristics of the LWE. The results suggest that the LWE generally forms in July, intensifies in August and September, separates from the coast of Luzon in October and propagates westward, and weakens in December and disappears in February. The LWE's westward migration is approximately along 19A degrees N latitude from northwest of Luzon to southeast of Hainan, with a mean speed of 6.6 cm/s.
Resumo:
热带西太平洋是一个流系和水团分布十分复杂的海域。热带西太平洋是一个在别处形成的几种水团的交汇区。许多起源于中、高纬度海域的次表层和中层水团,由不同流系带入和带出这个海域。热带西太平洋水团分布及其变化,与各种时间尺度的大尺度海洋环流和全球水循环变化密切联系,所在位势密度层次越深,所关联的气候变化时间尺度越长。因此,研究该海域次表层水和中层水的分布、扩散及其变化特征,对大洋环流动力学和气候变化研究有重要意义。本文利用中国ARGO资料中心提供的ARGO延时处理资料和美国NODC提供的WOD01中的高分辨率CTD资料,运用盐度极值法确定水团的核心,通过水团核心位置的分布及变化反映热带西太平洋次表层水和中层水的分布及其起源和归宿问题,试图获得较以往更加准确的NPIW和AAIW以及NPTW和SPTW的向南及向北扩散的特征,以及ITF在不同层次上的水源。对新发现的西太平洋热带水(WPTW)和西太平洋热带中层水(WPTIW)的水团性质、分布特征,成因和起源进行了比较系统的分析。在此基础上,分析上述次表层水和中层水20世纪八九十年代以来的年代变化特征。主要结果如下:(1)SPTW在137°E以西跨越赤道后,仍在很大程度上保持原有盐度,向西北和东北方向发展。SPTW在131°E以东几乎没有越过5°N,但在131°E以西可局部影响到6°N,棉兰老冷涡和哈马黑拉暖涡的涡混合输运在这一局部过程中可能起主要作用。NPTW主要位于10°N-20°N之间,在NEC输送下从东向西一直延伸到菲律宾沿岸,分成向北和向南两个分支,南分支在130°E以西沿棉兰老沿岸向南扩散大约到2°N,部分向西进入苏拉威西海,部分与SPTW相遇后有向东扩散的趋势。(2)AAIW几乎齐头并进地向北扩散到12°N-13°N,在125°E附近向北可以到达13°N左右。NPIW的主体分布在10°N以北、122°E以东,呈东北向西南的扩散趋势,在132°E以西至棉兰老沿岸之间可以到达4°N附近。(3)在已知的NPTW与SPTW之间,发现一个以往从未被报道过的次表层水,称之为WPTW。WPTW存在于3°N-12°N之间,核心盐度低于34.8psu,位势密度约在23.7 -24.7 之间。WPTW源于东太平洋20-25°N附近,由NEC南翼携带向西到达西边界后,部分经MC向南,经NECC向东折回,被局限在NEC与NECC之间的狭长水域。(4)2°N-10°N之间、从170°W到西边界分布着一片盐度比较均匀、呈现垂向盐度极小值特征的中层水。该水体位势密度约为26.0 -26.6 、位于AAIW之上、NPIW以南,核心盐度与AAIW相仿、但高于NPIW,在以往研究中未给予重视。从流场配置来看,这个被本文称为WPTIW的水体恰好处在NEC-NECC-SEC之间的强剪切区,在其北侧的是NPIW与同样起源于东北太平洋的浅的盐度极小值(SSM)之间的混合水,在其南侧相应层次上则是AAIW与SPTW之间的过渡水,两者之间被剪切流充分混合,形成盐度相对均匀的WPTIW。因此,WPTIW是热带西太平洋局地混合和再循环的产物。(5)在20世纪八九十年代和2000年以后这两个时期,本文所关注的次表层水和中层水在热带西太平洋扩散和在西边界附近交织在一起的总体态势基本一致。两个时期相比较,SPTW向西扩散程度变化不大,向北扩散程度有所加大,由前一时期的5°N,进一步扩散到6°N-7°N。NPTW在西边界附近的向南扩散程度有所削弱,在2002-2005年间只向南扩散到4°N,并且被SPTW阻挡于128°E以西,而前一个时期则可向南扩散到2°N,并且在2°N-4°N之间转向东跨过130°E。AAIW在西边界附近向北扩散程度有所加大,在2002-2005年到13°N附近,而前一个时期只到达11°N。NPIW在西边界附近的向南扩散程度有所削弱。(6)ITF的次表层水源基本上可以确定主要来自北太平洋,中层水源既有北太平洋,也有南太平洋。其中北太平洋次表层水和中层水经苏拉威西海、望加锡海峡到达弗罗勒斯海,层次越深趋势越明显。南太平洋次表层水没有进入印度尼西亚海域,AAIW则明显是经哈马黑拉海峡和马鲁古海峡到班达海。在各层次上,南海次表层水和中层水通过苏禄海进入ITF的可能性不大。