588 resultados para AOTUS MONKEYS
Resumo:
This study was conducted to analyse the course and the outcome of the liver disease in the co-infected animals in order to evaluate a possible synergic effect of human parvovirus B19 (B19V) and hepatitis A virus (HAV) co-infection. Nine adult cynomolgus monkeys were inoculated with serum obtained from a fatal case of B19V infection and/or a faecal suspension of acute HAV. The presence of specific antibodies to HAV and B19V, liver enzyme levels, viraemia, haematological changes, and necroinflammatory liver lesions were used for monitoring the infections. Seroconversion was confirmed in all infected groups. A similar pattern of B19V infection to human disease was observed, which was characterised by high and persistent viraemia in association with reticulocytopenia and mild to moderate anaemia during the period of investigation (59 days). Additionally, the intranuclear inclusion bodies were observed in pro-erythroblast cell from an infected cynomolgus and B19V Ag in hepatocytes. The erythroid hypoplasia and decrease in lymphocyte counts were more evident in the co-infected group. The present results demonstrated, for the first time, the susceptibility of cynomolgus to B19V infection, but it did not show a worsening of liver histopathology in the co-infected group.
Resumo:
Although previous studies have suggested an increased activation of humoral immunity in neurodegenerative diseases, it remains unclear whether this phenomenon is secondary to lesion formation or contributes directly to their development. Using stereotaxic injections in macaque monkey cerebral cortex, we studied the effects of human immunoglobulins on the neuronal cytoskeleton. Under these conditions, several MC-1-immunoreactive axons were observed in the vicinity of injection site. No MC-1 or TG-3 staining was detected in neuronal soma. Ultrastructurally, several axons in the same area displayed curly formations and accumulation of twisted tubules but not paired helical filaments. These data suggest that Fc fragment induce conformational changes of tau and subtle structural alterations in axons in this model. Immunocytochemical analyses in human autopsy materials revealed the presence of human Fc fragments as well as Fc receptors only in large pyramidal neurons known to be vulnerable in brain aging and Alzheimer's disease, further supporting a possible role of immunoglobulins in neurodegeneration.
Resumo:
The present study describes in primates the effects of a spinal cord injury on the number and size of the neurons in the magnocellular part of the red nucleus (RNm), the origin of the rubrospinal tract, and evaluates whether a neutralization of Nogo-A reduces the lesioned-induced degenerative processes observed in RNm. Two groups of monkeys were subjected to unilateral section of the spinal cord affecting the rubrospinal tract; one group was subsequently treated with an antibody neutralizing Nogo-A; the second group received a control antibody. Intact animals were also included in the study. Counting neurons stained with a monoclonal antibody recognizing non-phosphorylated epitopes on neurofilaments (SMI-32) indicated that their number in the contralesional RNm was consistently inferior to that in the ipsilesional RNm, in a proportion amounting up to 35%. The lesion also induced shrinkage of the soma of the neurons detected in the contralesional RNm. Infusing an anti-Nogo-A antibody at the site of the lesion did not increase the proportion of SMI-32 positive rubrospinal neurons in the contralesional RNm nor prevent shrinkage.
Resumo:
Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Resumo:
In adult macaque monkeys subjected to an incomplete spinal cord injury (SCI), corticospinal (CS) fibers are rarely observed to grow in the lesion territory. This situation is little affected by the application of an anti-Nogo-A antibody which otherwise fosters the growth of CS fibers rostrally and caudally to the lesion. However, when using the Sternberger monoclonal-incorporated antibody 32 (SMI-32), a marker detecting a non-phosphorylated neurofilament epitope, numerous SMI-32-positive (+) fibers were observed in the spinal lesion territory of 18 adult macaque monkeys; eight of these animals had received a control antibody infusion intrathecally for 1month after the injury, five animals an anti-Nogo-A antibody, and five animals received an anti-Nogo-A antibody together with brain-derived neurotrophic factor (BDNF). These fibers occupied the whole dorso-ventral axis of the lesion site with a tendency to accumulate on the ventral side, and their trajectories were erratic. Most of these fibers (about 87%) were larger than 1.3μm and densely SMI-32 (+) stained. In the undamaged spinal tissue, motoneurons form the only large population of SMI-32 (+) neurons which are densely stained and have large diameter axons. These data therefore suggest that a sizeable proportion of the fibers seen in the lesion territory originate from motoneurons, although fibers of other origins could also contribute. Neither the presence of the antibody neutralizing Nogo-A alone, nor the presence of the antibody neutralizing Nogo-A combined with BDNF influenced the number or the length of the SMI-32 (+) fibers in the spinal lesion area. In summary, our data show that after a spinal cord lesion in adult monkeys, the lesion site is colonized by fibers, a large portion of which presumably originate from motoneurons.
Resumo:
Infection with Leishmania major parasites results in the development of cutaneous ulcerative lesions on the skin. We investigated the protective potential of a single, recombinant histone H1 antigen against cutaneous leishmaniasis in an outbred population of vervet monkeys, using Montanide adjuvant. Protection was assessed by challenging the animals with a mixture of vector sand fly salivary-gland lysate and a low dose of in vitro-derived parasites, thus more closely mimicking natural infection induced by L. major. The course of infection in immunized monkeys was compared with that of animals that had healed from a primary infection and were immune. The monkeys immunized with recombinant histone H1 showed a reduced development of lesion size, compared with controls. Our study therefore illustrates the potential use of histone H1 as a vaccine candidate against cutaneous leishmaniasis in humans.
Resumo:
Social learning and the formation of traditions rely on the ability and willingness to copy one another. A central question is under which conditions individuals adapt behaviour to social influences. Here, we demonstrate that similarities in food processing techniques emerge on the level of matrilines (mother-offspring) but not on the group level in an experiment on six groups of wild vervet monkeys that involved grapes covered with sand. Monkeys regularly ate unclean grapes but also used four cleaning techniques more similarly within matrilines: rubbing in hands, rubbing on substrate, open with mouth, and open with hands. Individual cleaning techniques evolved over time as they converged within matrilines, stabilised at the end and remained stable in a follow-up session more than one year later. The similarity within matrilines persisted when we analyzed only foraging events of individuals in the absence of other matriline members and matriline members used more similar methods than adult full sisters. Thus, momentary conversion or purely genetic causation are unlikely explanations, favouring social learning as mechanism for within matriline similarities. The restriction of traditions to matriline membership rather than to the group level may restrict the development of culture in monkeys relative to apes or humans.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Toxoplasmosis is a worldwide zoonosis caused by Toxoplasma gondii, an obligate intracellular parasite protozoan. A large percentage of animals presents specific antibodies caused by a previous exposition, resulting in a chronic infection. Felides are the definitive hosts and the other warm-blooded animals, including primates, are the intermediate hosts. This study was aimed to determine the prevalence of T. gondii infection in free-living tufted capuchin monkeys (Cebus apella nigritus) from an ecological station located on Mata de Santa Teresa, Ribeirão Preto, SP, Brazil. T. gondii antibodies were analyzed by modified agglutination test (MAT) in serum samples of 36 tufted capuchin monkeys, considering eight as cut-off titer. From the studied animals, 3/36 (8.33%; CI95% 3.0-21.9%) presented T. gondii antibodies, all with titer 32. No significative difference was observed relating to the sex (1/3 male and 2/3 female), and to the age (1/3 young and 2/3 adult) (P>0.05). Thus, these results demonstrate the presence of T. gondii antibodies in primates from São Paulo state.
Resumo:
As glândulas adrenais possuem funções endócrinas relacionadas a múltiplas funções vitais, estando intimamente relacionadas à capacidade do animal em se adaptar ao estresse. O exame ultrassonográfico é o método diagnóstico de escolha para avaliação das glândulas em diferentes espécies. Considerando a escassa literatura, questiona-se se as doenças adrenais em primatas não humanos são incomuns ou subdiagnosticadas, havendo a hipótese desse fato ser determinado pela falta de parâmetros. Objetivou-se descrever as características ultrassonográficas das glândulas adrenais para três espécies de primatas não humanos mantidas em cativeiro: Saimiri sciureus (mico-de-cheiro), Aotus azarae infulatus (macaco-da-noite) e Alouatta guariba clamitans (bugio-ruivo). Conclui-se que é possível a identificação das glândulas adrenais por meio de exame ultrassonográfico, sendo que os padrões de referência foram estabelecidos com sucesso para as espécies em questão. Ressalta-se que a adequação de animais em ambientes estressantes é frequentemente acompanhada por uma hipertrofia das glândulas adrenais, portanto deve-se levar em consideração que as mensurações realizadas nesse estudo foram estabelecidas em animais de cativeiro.
Resumo:
Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb a, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates
Resumo:
Undernutrition elicited by a low-protein diet determines a marked reduction of hypophyseal activity and affects the function of the respective target organs. The objective of the present investigation was to study the ultrastructural and quantitative immunohistochemical changes of the different pituitary cell populations in undernourished monkeys that had been previously shown to have significant changes in craniofacial growth. Twenty Saimiri sciureus boliviensis monkeys of both sexes were used. The animals were born in captivity and were separated into two groups at one year of age, i.e., control and undernourished animals. The monkeys were fed ad libitum a 20% (control group) and a 10% (experimental group) protein diet for two years. Pituitaries were processed for light and electron microscopy. The former was immunolabeled with anti-GH, -PRL, -LH, -FSH, -ACTH, and -TSH sera. Volume density and cell density were measured using an image analyzer. Quantitative immunohistochemistry revealed a decrease in these parameters with regard to somatotrophs, lactotrophs, gonadotrophs and thyrotrophs from undernourished animals compared to control ones. In these populations, the ultrastructural study showed changes suggesting compensatory hyperfunction. On the contrary, no significant changes were found in the morphometric parameters or the ultrastructure of the corticotroph population. We conclude that in undernourished monkeys the somatotroph, lactotroph, gonadotroph, and thyrotroph cell populations showed quantitative immunohistochemical changes that can be correlated with ultrastructural findings.
Resumo:
A chimeric yellow fever (YF)-dengue serotype 2 (dengue 2) virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.