997 resultados para ANTIMICROBIAL PEPTIDE P34
Resumo:
Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.
Resumo:
Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.
Resumo:
CXCL14 is a chemokine with an atypical, yet highly conserved, primary structure characterized by a short N terminus and high sequence identity between human and mouse. Although it induces chemotaxis of monocytic cells at high concentrations, its physiological role in leukocyte trafficking remains elusive. In contrast, several studies have demonstrated that CXCL14 is a broad-spectrum antimicrobial peptide that is expressed abundantly and constitutively in epithelial tissues. In this study, we further explored the antimicrobial properties of CXCL14 against respiratory pathogens in vitro and in vivo. We found that CXCL14 potently killed Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus pneumoniae in a dose-dependent manner in part through membrane depolarization and rupture. By performing structure-activity studies, we found that the activity against Gram-negative bacteria was largely associated with the N-terminal peptide CXCL141-13. Interestingly, the central part of the molecule representing the β-sheet also maintained ∼62% killing activity and was sufficient to induce chemotaxis of THP-1 cells. The C-terminal α-helix of CXCL14 had neither antimicrobial nor chemotactic effect. To investigate a physiological function for CXCL14 in innate immunity in vivo, we infected CXCL14-deficient mice with lung pathogens and we found that CXCL14 contributed to enhanced clearance of Streptococcus pneumoniae, but not Pseudomonas aeruginosa. Our comprehensive studies reflect the complex bactericidal mechanisms of CXCL14, and we propose that different structural features are relevant for the killing of Gram-negative and Gram-positive bacteria. Taken together, our studies show that evolutionary-conserved features of CXCL14 are important for constitutive antimicrobial defenses against pneumonia.
Resumo:
Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals.
Resumo:
Pyrrhacoricin is a naturally occurring antimicrobial peptide from the European fire bug Pyrrhocoris apterus. It has submicromolar activity against a range of Gram-negative bacterial strains and has created recent interest as a lead for the development of novel antibiotic compounds. In this study, we have used NMR spectroscopy to determine the solution structures of pyrrhocoricin and a synthetic macrocyclic derivative that has improved in vivo pharmaceutical properties. Native pyrrhocoricin is largely disordered in solution, but there is evidence of a subpopulation with ordered turn regions over residues 2-5, 4-7, and 16-19. The macrocyclic derivative incorporates a nine amino acid linker joining the N- and C-termini, which does not adversely affect the antimicrobial potency but leads to a broader spectrum of activity. The NMR data suggest that the turn conformations in the cyclic derivative are similar to those in the native form, thus implicating them in the biological function. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.
Resumo:
Bicellar lipid mixture dispersions progressively coalesce to larger structures on warming. This phase behaviour is particularly sensitive to interactions that perturb bilayer properties. In this study, ²H NMR was used to study the perturbation of bicellar lipid mixtures by two peptides (SP-B₆₃₋₇₈, a lung surfactant protein fragment and Magainin 2, an antimicrobial peptide) which are structurally similar. Particular attention was paid to the relation between peptide-induced perturbation and lipid composition. In bicellar dispersions containing only zwitterionic lipids (DMPC-d₅₄/DMPC/DHPC (3:1:1)) both peptides had little to no effect on the temperature at which coalescence to larger structures occurred. Conversely, in mixtures containing anionic lipids (DMPC-d₅₄/DMPG/DHPC (3:1:1)), both peptides modified bicellar phase behaviour. In mixtures containing SP-B₆₃₋₇₈, the presence of peptide decreased the temperature of the ribbon-like to extended lamellar phase transition. The addition of Magainin 2 to DMPCd₅₄/ DMPG/DHPC (3:1:1) mixtures, in contrast, increased the temperature of this transition and yielded a series of spectra resembling DMPC/DHPC (4:1) mixtures. Additional studies of lipid dispersions containing deuterated anionic lipids were done to determine whether the observed perturbation involved a peptide-induced separation of zwitterionic and anionic lipids. Comparison of DMPC/DMPG-d₅₄/DHPC (3:1:1) and DMPC-d₅₄/DMPG/DHPC (3:1:1) mixtures showed that DMPC and DMPG occupy similar environments in the presence of SP-B₆₃₋₇₈, but different lipid environments in the presence of Magainin 2. This might reflect the promotion of anionic lipid clustering by Magainin 2. These results demonstrate the variability of mechanisms of peptide-induced perturbation and suggest that lipid composition is an important factor in the peptide-induced perturbation of lipid structures.
Resumo:
Les peptides et protéines extracteurs de lipides (PEL) se lient aux membranes lipidiques puis en extraient des lipides en formant de plus petits auto-assemblages, un phénomène qui peut aller jusqu'à la fragmentation des membranes. Dans la nature, cette extraction se produit sur une gamme de cellules et entraîne des conséquences variées, comme la modification de la composition de la membrane et la mort de la cellule. Cette thèse se penche sur l’extraction lipidique, ou fragmentation, induite par le peptide mélittine et la protéine Binder-of-SPerm 1 (BSP1) sur des membranes lipidiques modèles. Pour ce faire, des liposomes de différentes compositions sont préparés et incubés avec la mélittine ou la BSP1. L'association aux membranes est déterminée par la fluorescence intrinsèque des PEL, tandis que l'extraction est caractérisée par une plateforme analytique combinant des tests colorimétriques et des analyses en chromatographie en phase liquide et spectrométrie de masse (LCMS). La mélittine fait partie des peptides antimicrobiens cationiques, un groupe de PEL très répandu chez les organismes vivants. Ces peptides sont intéressants du point du vue médical étant donné leur mode d’action qui vise directement les lipides des membranes. Plusieurs de ceux-ci agissent sur les membranes des bactéries selon le mécanisme dit « en tapis », par lequel ils s’adsorbent à leur surface, forment des pores et ultimement causent leur fragmentation. Dans cette thèse, la mélittine est utilisée comme peptide modèle afin d’étudier le mécanisme par lequel les peptides antimicrobiens cationiques fragmentent les membranes. Les résultats montrent que la fragmentation des membranes de phosphatidylcholines (PC) est réduite par une déméthylation graduelle de leur groupement ammonium. L'analyse du matériel fragmenté révèle que les PC sont préférentiellement extraites des membranes, dû à un enrichissement local en PC autour de la mélittine à l'intérieur de la membrane. De plus, un analogue de la mélittine, dont la majorité des résidus cationiques sont neutralisés, est utilisé pour évaluer le rôle du caractère cationique de la mélittine native. La neutralisation augmente l'affinité du peptide pour les membranes neutres et anioniques, réduit la fragmentation des membranes neutres et augmente la fragmentation des membranes anioniques. Malgré les interactions électrostatiques entre le peptide cationique et les lipides anioniques, aucune spécificité lipidique n'est observée dans l'extraction. La BSP1 est la protéine la plus abondante du liquide séminal bovin et constitue un autre exemple de PEL naturel important. Elle se mélange aux spermatozoïdes lors de l’éjaculation et extrait des lipides de leur membrane, notamment le cholestérol et les phosphatidylcholines. Cette étape cruciale modifie la composition lipidique de la membrane du spermatozoïde, ce qui faciliterait par la suite la fécondation de l’ovule. Cependant, le contact prolongé de la protéine avec les spermatozoïdes endommagerait la semence. Cette thèse cherche donc à approfondir notre compréhension de ce délicat phénomène en étudiant le mécanisme moléculaire par lequel la protéine fragmente les membranes lipidiques. Les résultats des présents travaux permettent de proposer un mécanisme d’extraction lipidique en 3 étapes : 1) L'association à l’interface des membranes; 2) La relocalisation de l’interface vers le cœur lipidique; 3) La fragmentation des membranes. La BSP1 se lie directement à deux PC à l'interface; une quantité suffisante de PC dans les membranes est nécessaire pour permettre l'association et la fragmentation. Cette liaison spécifique ne mène généralement pas à une extraction lipidique sélective. L'impact des insaturations des chaînes lipidiques, de la présence de lysophosphatidylcholines, de phosphatidyléthanolamine, de cholestérol et de lipides anioniques est également évalué. Les présentes observations soulignent la complexe relation entre l'affinité d'un PEL pour une membrane et le niveau de fragmentation qu'il induit. L'importance de la relocalisation des PEL de l'interface vers le cœur hydrophobe des membranes pour permettre leur fragmentation est réitérée. Cette fragmentation semble s'accompagner d'une extraction lipidique préférentielle seulement lorsqu'une séparation de phase est induite au niveau de la membrane, nonobstant les interactions spécifiques PEL-lipide. Les prévalences des structures amphiphiles chez certains PEL, ainsi que de la fragmentation en auto-assemblages discoïdaux sont discutées. Finalement, le rôle des interactions électrostatiques entre les peptides antimicrobiens cationiques et les membranes bactériennes anioniques est nuancé : les résidus chargés diminueraient l'association des peptides aux membranes neutres suite à l'augmentation de leur énergie de solvatation.
Resumo:
This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 hours. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress.