934 resultados para ANSYS, cold-formed, coperture di edifici industriali
Resumo:
A full-scale experimental study on the structural performance of load-bearing wall panels made of cold-formed steel frames and boards is presented. Six different types of C-channel stud, a total of 20 panels with one middle stud and 10 panels with two middle studs were tested under vertical compression until failure. For panels, the main variables considered are screw spacing (300 mm, 400 mm, or 600 mm) in the middle stud, board type (oriented strand board - OSB, cement particle board - CPB, or calcium silicate board - CSB), board number (no sheathing, one-side sheathing, or two-side sheathing), and loading type (1, 3, or 4-point loading). The measured load capacity of studs and panels agrees well with analytical prediction. Due to the restraint by rivet connections between stud and track, the effective length factor for the middle stud and the side stud in a frame (unsheathed panel) is reduced to 0.90 and 0.84, respectively. The load carrying capacity of a stud increases significantly whenever one- or two-side sheathing is used, although the latter is significantly more effective. It is also dependent upon the type of board used. Whereas panels with either OSB or CPB boards have nearly identical load carrying capacity, panels with CSB boards are considerably weaker. Screw spacing affects the load carrying capacity of a stud. When the screw spacing on the middle stud in panels with one-side sheathing is reduced from 600 mm to 300 mm, its load carrying capacity increases by 14.5 %, 20.6% and 94.2% for OSB, CPB and CSB, respectively.
Resumo:
This paper presents design recommendations for the strength of cold-formed steel angle structs. The work was part funded by the Carnegie Trust and is co-authored by academics from Hong-Kong University. The work has led to a collaboration with the University of Malaya, attempting to predict the strength using artificial neural networks.
Resumo:
In the design of cold-formed steel portal frames it is essential that joint flexibility is taken into account in frame analysis. This paper describes optimisation of the joint detail of a cold-formed steel portal frame, conducted concurrently with frame analysis. It is one of the outputs of an Industrial CASE award on the design of cold-formed steel portal frames, which is being used to support a KTP application.
Resumo:
Cold-formed steel sections are often used as wall studs or floor joists; such sections often include web holes for ease of installation of the services. Cold-formed steel design codes, however, do not consider the effect of such web holes. In this paper, a combination of experimental tests and non-linear elasto-plastic finite element analyses are used to investigate the effect of such holes on web crippling under interior-two-flange (ITF) loading conditions; the cases of both flange fastened and flange unfastened are considered. A good agreement between the experimental tests and finite element analyses was obtained. The finite element model was then used for the purposes of a parametric study on the effect of different sizes and position of holes in the web. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, and the ratio of the distance from the edge of the bearing to the flat depth of web. Design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.
Resumo:
The authors have recently described a cold-formed steel portal framing system in which simple bolted moment-connections, formed through brackets, were used for the eaves and apex joints. Such connections, however, cannot be considered as rigid because of localised in-plane elongation of the bolt-holes caused by bearing against the bolt-shanks. To therefore predict the initial stiffness of such connections, it is necessary to know the initial bolt-hole elongation stiffness k(b). In this paper, a finite element-solid idealisation of a bolted lap joint in shear will be described that can be used to determine k(b); the results obtained are validated against experimental data. A beam idealisation of a cold-formed steel bolted moment-connection is then described, in which spring elements are used to idealise the rotational flexibility of the bolt-groups resulting from bolt-hole elongation: Using the value of k(b) in the beam idealisation, the deflections predicted are shown to be similar to those measured experimentally in laboratory tests conducted on the apex joint of a cold-formed steel portal frame. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: