968 resultados para ANGIOTENSIN-II RECEPTORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of blood flow during exercise involves different mechanisms, one of which is the activation of the renin-angiotensin system, which contributes to exercise-induced blood flow redistribution. Moreover, although angiotensin II (Ang II) is considered a potent venoconstrictor agonist, little is known about its effects on the venous bed during exercise. Therefore, the present study aimed to assess the Ang II responses in thefemoral vein taken from sedentary and trained rats at rest or subjected to a single bout of exercise immediately before organ bath experiments. Isolated preparations of femoral veins taken from resting-sedentary, exercised-sedentary, resting-trained and exercised-trained animals were studied in an organ bath. In parallel, the mRNA expression of prepro-endothelin-1 (ppET-1), as well as the ETA and ETB receptors, was quantified by real-time PCR in this tissue. The results show that, in the presence of L-NAME, Ang II responses in resting-sedentary animals were higher compared to the other groups. However, this difference disappeared after co-treatment with indomethacin, BQ-123 or BQ-788. Moreover, exercise reduced ppET-1 mRNA expression. These reductions in mRNA expression were more evident in resting-trained animals. In conclusion, either acute or repeated exercise adapts the rat femoral veins, thereby reducing the Ang II responses. This adaptation is masked by the action of locally produced nitric oxide and involves, at least partially, the ETB- mediated release of vasodilator prostanoids. Reductions in endothelin-1 production may also be involved in these exercise-induced modifications of Ang II responses in the femoral vein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blockade of central angiotensin receptors with the specific antagonist [Leu8]-ANG II abolished water ingestion and water and sodium excretion induced by infusion of angiotensin II (ANGII) into the lateral ventricle (LV) of rats. The antagonist reduced but did not suppress the salt appetite induced by ANGII infusion. Subcutaneous injection of deoxycorticosterone acetate (DOCA) caused increases in water and 3% NaCl ingestion and decreases in sodium excretion. When central ANGII infusion was combined with peripheral DOCA, the water intake was similar to that induced by ANGII alone and the ingestion of 3% NaCl was increased, whereas sodium excretion was inhibited. When ANGII was infused alone, a detailed temporal analysis of fluid and sodium balance showed a negative balance similar those saline controls that persisted throughout the experiment. Combined administration of ANGII and DOCA induce significant changes in water and sodium balance. Sodium and water maintained a positive balance through out the 8-h experiment. The data support an interaction of central ANGII and DOCA on sodium intake and water and sodium balance. © 1994.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of previous central treatment with prazosin (an α1-adrenoceptor antagonist) or clonidine (an α2-adrenoceptor agonist) on the dipsogenic, pressor and tachycardic responses produced by intracerebroventricular (ICV) injection of angiotensin II (AII) in conscious rats. Holtzman rats with a chronic cannula implanted in the lateral ventricle were tested for dipsogenic and cardiovascular (arterial pressure and heart rate) responses in separate experiments. Previous ICV treatment with clonidine (20, 40, 80 and 120 nmol) abolished the pressor, tachycardic and dipsogenic effects of ICV AII. After all doses of prazosin (40, 80 and 120 nmol), AII induced bradycardic responses, but only the 80 and 120 nmol doses of prazosin reduced the pressor responses to AII. Prazosin produced no alteration in the dipsogenic effect of AII. The results show that the periventricular α1-adrenoceptors are involved only in the cardiovascular responses produced by central AII, whereas clonidine acting through α2-adrenergic and/or imidazole receptors can modulate all actions of AII. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the α1- and α2-adrenergic receptors of the lateral hypothalamus (LH) on the drinking response elicited by intracerebroventricular (i.c.v) injections of carbachol and angiotensin II (AII) in rats. Clonidine (an α2-adrenergic agonist) injected into the LH produced a dose-dependent reduction of the drinking responses elicited by i.c.v. administration of carbachol and AII. The α1-adrenergic agonist phenylephrine injected into the LH reduced the dipsogenic response to i.c.v. AII, but not to carbachol. Injection of yohimbine (an α2-adrenergic antagonist) and prazosin (an α1-adrenergic antagonist) into the LH also reduced the water intake produced by i.c.v. injection of AII. Previous injection of α1- or α2-adrenergic antagonists into the LH increased the antidipsogenic effect of clonidine or phenylephrine injected into the same area on the water intake induced by i.c.v. AII. These results show that the α1- and α2-adrenergic receptors of the LH are involved in the control of drinking responses elicited by i.c.v. injection of AII in rats. They also show that clonidine, but not phenylephrine, suppresses the drinking induced by i.c.v. carbachol. The data suggest that the discharge of central α-adrenergic receptors has a dual (inhibitory and excitatory) effect on water intake induced by central AII. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 +/- 0.9 days; 2369 +/- 491 g) were randomly assigned to receive saline (placebo, P) or the AT(1) receptor (AT(1)-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO(2) = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT(1)-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT(1)-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT(1)-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT(1)-R staining, but C animals showed weak iNOS and AT(1)-R staining. Macrophages of L and P animals showed moderate and weak AT(2)-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT(1)-R blockade. We suggest that AT(1)-R blockade might act through AT(2)-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of renin-angiotensin system has been linked to cardiovascular and autonomic dysfunctions in diabetes. Experiments were performed to investigate the effects of angiotensin-converting enzyme inhibitor (ACEI), enalapril, on cardiac and autonomic functions in diabetic rats. Diabetes was induced by streptozotocin (50 mg/kg), and rats were treated with enalapril (1 mg.kg(-1).d(-1)). After 30 days, evaluations were performed in control, diabetic, and enalapril-treated groups. Cardiac function was evaluated by echocardiography and through cannulation of the left ventricle (at baseline and in response to volume overload). Heart rate and systolic blood pressure variabilities were evaluated in the time and frequency domains. Streptozotocin rats had left ventricular systolic and diastolic dysfunctions, expressed by reduced ejection fraction and increased isovolumic relaxation time. The ACEI prevented these changes, improved diastolic cardiac responses to volume overload and total power of heart rate variability, reduced the ACE1 activity and protein expression and cardiac angiotensin (Ang) II levels, and increased angiotensin-converting enzyme 2 activity, despite unchanged blood pressure. Correlations were obtained between Ang II content with systolic and diastolic functions and heart rate variability. These findings provide evidence that the low-dose ACEI prevents autonomic and cardiac dysfunctions induced by diabetes without changing blood pressure and associated with reduced cardiac Ang II and increased angiotensin-converting enzyme 2 activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In kidney epithelial cells, an angiotensin II (Ang II) type 2 receptor subtype (AT2) is linked to a membrane-associated phospholipase A2 (PLA2) and the mitogen-activated protein kinase (MAPK) superfamily. However, the intervening steps in this linkage have not been determined. The aim of this study was to determine whether arachidonic acid mediates Ang II’s effect on p21ras and if so, to ascertain the signaling mechanism(s). We observed that Ang II activated p21ras and that mepacrine, a phospholipase A2 inhibitor, blocked this effect. This activation was also inhibited by PD123319, an AT2 receptor antagonist but not by losartan, an AT1 receptor antagonist. Furthermore, Ang II caused rapid tyrosine phosphorylation of Shc and its association with Grb2. Arachidonic acid and linoleic acid mimicked Ang II-induced tyrosine phosphorylation of Shc and activation of p21ras. Moreover, Ang II and arachidonic acid induced an association between p21ras and Shc. We demonstrate that arachidonic acid mediates linkage of a G protein-coupled receptor to p21ras via Shc tyrosine phosphorylation and association with Grb2/Sos. These observations have important implications for other G protein-coupled receptors linked to a variety of phospholipases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of N omega-nitro-L-arginine methyl ester (L-NAME, 40 mu g), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. Results: Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. Discussion and conclusion: Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P. gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.