1000 resultados para AH-2001-B2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degreesC and 10 degreesC. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degreesC, maximum velocity at ah other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P, borchgrevinki to either -1 degreesC or 4 degreesC for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degreesC and 10 degreesC. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degreesC or 4 degreesC for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of -1 degreesC to 10 degreesC. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argyrodes Simon 1864 is a large, cosmopolitan theridiid genus whose members exhibit a wide range of foraging techniques which usually involve exploiting other spiders, either by using their webs, stealing their food, or preying on them directly. We held a symposium on this genus at the 15th International Congress of Arachnology, Badplaas, South Africa in order to obtain a clearer perspective on the relationship between the phylogeny of the genus and the different foraging techniques. We concluded that Argyrodes forms a monophyletic group within the Theridiidae, and that there are clear monophyletic clades within the genus (already identified as species groups) that appear to share behavioral characteristics. We found no clear indication that foraging behaviors such as kleptoparasitism (stealing food) evolved from araneophagy (eating spiders) or vice versa. However, it appears that species that specialize in either kleptoparasitism or araneophagy use additional techniques in comparison to species that readily use both foraging modes. During our examination of Argyrodes/host interactions we noted the importance of Nephila species as hosts of Argyrodes species around the world and the impact of Argyrodes on Nephila. We also noted the fluid nature of the relationship between Argyrodes and the spiders with which they interact. For example, an Argyrodes/host relationship can change to an Argyrodes/prey relationship, and the type of kleptoparasitic behavior employed by an Argyrodes can change when it changes host species. The importance of eating silk was also noted and identified as an area for further research. We concluded that more work involving international collaboration is needed to fully understand the phylogeny of the genus and the relationships between the different types of foraging behaviors.