992 resultados para ADSORPTION SIMULATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to describe the current state of atomistic simulation of zeolite surfaces by describing what has been achieved and to show how the surface structures are modelled. This is illustrated by using atomistic simulation techniques to model the {100} surface of zeolite LTA. The pure siliceous and aluminated CaNa-A and Na-A with Si/Al = 1 structures were considered. The surface showed three stable terminations but the relative stability varied with composition. The resulting surface structures and geometries show extensive framework distortions, especially in the aluminated forms where the cations formed strong interaction with the zeolite framework thereby increasing their adsorption energies and stabilising their cation position. © 2001 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.