602 resultados para ADP ribosylation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic resistant strains of P. aeruginosa are commonly found as secondary infection in immune-compromised patients leaving significant mortality and healthcare cost. Pseudomonas aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III secretion system are critical molecules required to disrupt mammalian cell signaling and holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching from a GDP- bound inactive form to a GTP-bound active form. Activation and inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some pathogenic bacteria have shown affinity for Rab proteins during infection and make their way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are possible targets for ADP-ribosylation modification. However, the expression of Rin1, but not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA domains are required for optimal Rab5 activation in conjunction with active Ras. These observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 during the phagocytosis of P. aeruginosa. The second part of this dissertation investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of several P. aeruginosa strains were completely susceptible to DhL at a concentration between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) inhibited growth and many virulent activities without damaging the integrity of the cell suggesting anti-Pseudomonas activity of DhL.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ADP-ribosyl)ation of nuclear proteins was several-fold higher in the pachytene spermatocytes than in the premeiotic germ cells of the rat. Among the histones of the pachytene nucleus, histone subtypes H2A, H1 and H3 were poly(ADP-ribosyl)ated. Based on the immunoaffinity fractionation procedure of Malik, Miwa, Sugimara & Smulson [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2554-2558] we have fractionated DNAase-II-solubilized chromatin into poly(ADP-ribosyl)ated chromatin (PAC) and non-poly(ADP-ribosyl)ated chromatin (non-PAC) domains on an anti-[poly(ADP-ribose)] IgG affinity matrix. Approx. 2.5% of the pachytene chromatin represented the PAC domains. A significant amount of [alpha-32P]dATP-labelled pachytene chromatin (labelled in vitro) was bound to the affinity matrix. The DNA of pachytene PAC domains had internal strand breaks, significant length of gaps and ligatable ends, namely 5'-phosphoryl and 3'-hydroxyl termini. On the other hand, the PAC domains from 18 h regenerating liver had very few gaps, if any. The presence of gaps in the pachytene PAC DNA was also evident from thermal denaturation studies. Although many of the polypeptides were common to the PAC domains of both pachytene and regenerating liver, the DNA sequences associated with these domains were quite different. A 20 kDa protein and the testis-specific histone H1t were selectively enriched in the pachytene PAC domains. The pachytene PAC domains also contained approx. 10% of the messenger coding sequences present in the DNAase-II-solubilized chromatin. The pachytene PAC domains, therefore, may represent highly enriched DNA-repair domains of the pachytene nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we show that PARP inhibitor-mediated cell death of RAD51C-deficient cells occur by NHEJ-driven illegitimate repair of one-ended double-strand breaks, and the hypomorphic RAD51C pathological mutant cells can be targeted by `synergistic toxicity' induced by low-dose PARP inhibitor and IR.Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a `synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G(2)/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity `synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a `synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Delta arr). The M. smegmatis Delta arr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Delta arr. The growth profiles and mutation spectrum of Delta arr and, Delta arr combined with Delta udgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of Delta fpg Delta arr strain differed somewhat from that of the Delta fpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Delta arr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report provides a summary of the frame survey results carried out in lakes Kyoga and Kwania in 1990. The ADP Fisheries Survey of Lake Kyoga is charged with a stock-assessment programme. The term stock-assessment is generally used to express the need of fisheries managers for knowledge on fish stocks which are allegedly over-exploited already. Stock-assessment can be very comprehensive, costly and time-consuming. Essentially however, investigations into exploited stocks and the fishery should provide viable answers to the questions of management at the shortest possible notice. Surveys should in any case provide indications concerning the rate of exploitation. That requires the execution of a catch assessment survey (CAS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Å resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replicase polyproteins, pp1a and pp1ab, of porcine Transmissible gastroenteritis virus (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by in vitro translation experiments and protein sequencing, that the papain-like protease 1, PL1pro, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys1093, cleaves the nsp2|nsp3 site at 879Gly|Gly880. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1pro was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1''-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp1320–Ser1486.