98 resultados para ADH


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Diabetes insipidus (DI) is a rare disease in humans and animals, which is caused by the lack of production, malfunction or dysfunction of the distal nephron to the antidiuretic effect of the antidiuretic hormone (ADH). Diagnosis requires a thorough medical history, clinical examination and further laboratory confirmation. This case report describes the appearance of DI in five Duroc boars in Switzerland. Case presentation Two purebred intact Duroc boars at the age of 8 months and 1.5 years, respectively, with a history of polyuric and polydipsic symptoms had been referred to the Swine Clinic in Berne. Based on the case history, the results of clinical examination and the analysis of blood and urine, a tentative diagnosis of DI was concluded. Finally, the diagnosis was confirmed by findings from a modified water deprivation test, macroscopic examinations and histopathology. Following the diagnosis, three genes known to be involved in inherited DI in humans were analyzed in order to explore a possible genetic background of the affected boars. Conclusion The etiology of DI in pigs is supposed to be the same as in humans, although this disease has never been described in pigs before. Thus, although occurring only on rare occasions, DI should be considered as a differential diagnosis in pigs with polyuria and polydipsia. It seems that a modified water deprivation test may be a helpful tool for confirming a diagnosis in pigs. Since hereditary forms of DI have been described in humans, the occurrence of DI in pigs should be considered in breeding programs although we were not able to identify a disease associated mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alcohol dehydrogenase (Adh) gene family is much more complex in Pinus banksiana than in angiosperms, with at least seven expressed genes organized as two tightly linked clusters. Intron number and position are highly conserved between P. banksiana and angiosperms. Unlike angiosperm Adh genes, numerous duplications, as large as 217 bp, were observed within the noncoding regions of P. banksiana Adh genes and may be a common feature of conifer genes. A high frequency of duplication over a wide range of scales may contribute to the large genome size of conifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rice genus, Oryza, which comprises 23 species and 9 recognized genome types, represents an enormous gene pool for genetic improvement of rice cultivars. Clarification of phylogenetic relationships of rice genomes is critical for effective utilization of the wild rice germ plasm. By generating and comparing two nuclear gene (Adh1 and Adh2) trees and a chloroplast gene (matK) tree of all rice species, phylogenetic relationships among the rice genomes were inferred. Origins of the allotetraploid species, which constitute more than one-third of rice species diversity, were reconstructed based on the Adh gene phylogenies. Genome types of the maternal parents of allotetraploid species were determined based on the matK gene tree. The phylogenetic reconstruction largely supports the previous recognition of rice genomes. It further revealed that the EE genome species is most closely related to the DD genome progenitor that gave rise to the CCDD genome. Three species of the CCDD genome may have originated through a single hybridization event, and their maternal parent had the CC genome. The BBCC genome species had different origins, and their maternal parents had either a BB or CC genome. An additional genome type, HHKK, was recognized for Oryza schlechteri and Porteresia coarctata, suggesting that P. coarctata is an Oryza species. The AA genome lineage, which contains cultivated rice, is a recently diverged and rapidly radiated lineage within the rice genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone action of α-crystallin could be evaluated easily with selected endogenous metabolites. Enhancement of the anti-aggregation activity in the βL-crystallin assay was strongest with pantethine, which appeared to interact with α-crystallin. Enhancement of the anti-aggregation activity in the ADH assay was strongest with glutathione which appeared to interact with ADH. The results indicated that the products of common metabolic pathways can modulate the chaperone-like effects of α-crystallin on protein aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenies of Adh1 and Adh2 genes suggest that a widespread Mediterranean peony, Paeonia officinalis, is a homoploid hybrid species between two allotetraploid species, Paeonia peregrina and a member of the Paeonia arietina species group. Three phylogenetically distinct types of Adh sequences have been identified from both accessions of P. officinalis, of which two types are most closely related to the two homoeologous Adh loci of the P. arietina group and the remaining type came from one of the two Adh homoeologs of P. peregrina. The other Adh homoeolog of P. peregrina was apparently lost from the hybrid genome, possibly through backcrossing with the P. arietina group. This is a documentation of homoploid hybrid speciation between allotetraploid species in nature. This study suggests that hybrid speciation between allotetraploids can occur without an intermediate stage of genome diploidization or a further doubling of genome size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is known to be induced by environmental stresses and regulated developmentally. We used a negative-selection approach to isolate mutants that were defective in regulating the expression of the ADH gene during seed germination; we then characterized three recessive mutants, aar1–1, aar1–2, and aar2–1, which belong to two complementation groups. In addition to their defects during seed germination, mutations in the AAR1 and AAR2 genes also affected anoxic and hypoxic induction of ADH and other glycolytic genes in mature plants. The aar1 and aar2 mutants were also defective in responding to cold and osmotic stress. The two allelic mutants aar1–1and aar1–2 exhibited different phenotypes under cold and osmotic stresses. Based on our results we propose that these mutants are defective in a late step of the signaling pathways that lead to increased expression of the ADH gene and glycolytic genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabidopsis has inducible responses for tolerance of O2 deficiency. Plants previously exposed to 5% O2 were more tolerant than the controls to hypoxic stress (0.1% O2 for 48 h) in both roots and shoots, but hypoxic acclimation did not improve tolerance to anoxia (0% O2). The acclimation of shoots was not dependent on the roots: increased shoot tolerance was observed when the roots of the plants were removed. An adh (alcohol dehydrogenase) null mutant did not show acclimation of the roots but retained the shoot survival response. Abscisic acid treatment also differentiated the root and shoot responses; pretreatment induced root survival in hypoxic stress conditions (0.1% O2) but did not induce any increase in the survival of shoots. Cycloheximide blocked both root and shoot acclimation, indicating that both acclimation mechanisms are dependent on protein synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the evolutionary dynamics of three of the best-studied plant nuclear multigene families. The data analyzed derive from the genes that encode the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS), the gene family that encodes the enzyme chalcone synthase (Chs), and the gene family that encodes alcohol dehydrogenases (Adh). In addition, we consider the limited evolutionary data available on plant transposable elements. New Chs and rbcS genes appear to be recruited at about 10 times the rate estimated for Adh genes, and this is correlated with a much smaller average gene family size for Adh genes. In addition, duplication and divergence in function appears to be relatively common for Chs genes in flowering plant evolution. Analyses of synonymous nucleotide substitution rates for Adh genes in monocots reject a linear relationship with clock time. Replacement substitution rates vary with time in a complex fashion, which suggests that adaptive evolution has played an important role in driving divergence following gene duplication events. Molecular population genetic studies of Adh and Chs genes reveal high levels of molecular diversity within species. These studies also reveal that inter- and intralocus recombination are important forces in the generation allelic novelties. Moreover, illegitimate recombination events appear to be an important factor in transposable element loss in plants. When we consider the recruitment and loss of new gene copies, the generation of allelic diversity within plant species, and ectopic exchange among transposable elements, we conclude that recombination is a pervasive force at all levels of plant evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum) plants were transformed with gene constructs containing a tomato alcohol dehydrogenase (ADH) cDNA (ADH 2) coupled in a sense orientation with either the constitutive cauliflower mosaic virus 35S promoter or the fruit-specific tomato polygalacturonase promoter. Ripening fruit from plants transformed with the constitutively expressed transgene(s) had a range of ADH activities; some plants had no detectable activity, whereas others had significantly higher ADH activity, up to twice that of controls. Transformed plants with fruit-specific expression of the transgene(s) also displayed a range of enhanced ADH activities in the ripening fruit, but no suppression was observed. Modified ADH levels in the ripening fruit influenced the balance between some of the aldehydes and the corresponding alcohols associated with flavor production. Hexanol and Z-3-hexenol levels were increased in fruit with increased ADH activity and reduced in fruit with low ADH activity. Concentrations of the respective aldehydes were generally unaltered. The phenotypes of modified fruit ADH activity and volatile abundance were transmitted to second-generation plants in accordance with the patterns of inheritance of the transgenes. In a preliminary taste trial, fruit with elevated ADH activity and higher levels of alcohols were identified as having a more intense “ripe fruit” flavor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alcohol dehydrogenase (Adh; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family has two or three loci in a broad array of angiosperm species. The relative stability in the number of Adh loci led Gottlieb [Gottlieb, L. D. (1982) Science 216, 373-380] to propose that the Adh gene family arose from an ancient gene duplication. In this study, the isolation of three loci from the California fan palm (Washingtonia robusta) is reported. The three loci from palm are highly diverged. One palm Adh gene, referred to here as adhB, has been completely sequenced, including 950 nucleotides of the upstream regulatory region. For the second locus, adhA, 81% of the exon sequence is complete. Both show the same basic structure as grass Adh genes in terms of intron number and intron location. The third locus, adhC, for which only a small amount of sequence is available (12% of exon sequence) appears to be more highly diverged. Comparison of the Adh gene families from palms and grasses shows that the adh1 and adh2 genes of grasses, and the adhA and adhB genes of palms, arose by duplication following the divergence of the two families. This finding suggests that the multiple Adh loci in different monocot lineages are not the result of a single ancestral duplication but, rather, of multiple duplication events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linkage disequilibrium between polymorphisms in a natural population may result from various evolutionary forces, including random genetic drift due to sampling of gametes during reproduction, restricted migration between subpopulations in a subdivided population, or epistatic selection. In this report, we present evidence that the majority of significant linkage disequilibria observed in introns of the alcohol dehydrogenase locus (Adh) of Drosophila pseudoobscura are due to epistatic selection maintaining secondary structure of precursor mRNA (pre-mRNA). Based on phylogenetic-comparative analysis and a likelihood approach, we propose secondary structure models of Adh pre-mRNA for the regions of the adult intron and intron 2 where clustering of linkage disequilibria has been observed. Furthermore, we applied the likelihood ratio test to the phylogenetically predicted secondary structure in intron 1. In contrast to the other two structures, polymorphisms associated with the more conserved stem-loop structure of intron 1 are in low frequency, and linkage disequilibria have not been observed. These findings are qualitatively consistent with a model of compensatory fitness interactions. This model assumes that mutations disrupting pairing in a secondary structural element are individually deleterious if they destabilize a functionally important structure; a second "compensatory" mutation, however, may restabilize the structure and restore fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular analysis of invasive breast cancer and its precursors has furthered our understanding of breast cancer progression. In the past few years, new multi-step pathways of breast cancer progression have been delineated through genotypic-phenotypic correlations. Nuclear grade, more than any other pathological feature, is strongly associated with the number and pattern of molecular genetic abnormalities in breast cancer cells. Thus, there are two distinct major pathways to the evolution of low- and high-grade invasive carcinomas: whilst the former consistently show oestrogen receptor (ER) and progesterone receptor (PgR) positivity and 16q loss, the latter are usually ER/PgR-negative and show Her-2 over-expression/amplification and complex karyotypes. The boundaries between the evolutionary pathways of well-differentiated/low-grade ductal and lobular carcinomas have been blurred, with changes in E-cadherin expression being one of the few distinguishing features between the two. In addition, lesions long thought to be precursors of breast carcinomas, such as hyperplasia of usual type, are currently considered mere risk indicators, whilst columnar cell lesions are now implicated as non-obligate precursors of atypical ductal hyperplasia (ADH) and well-differentiated ductal carcinoma in situ (DCIS). However, only through the combination of comprehensive morphological analysis and cutting-edge molecular tools can this knowledge be translated into clinical practice and patient management. Copyright (C) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.