474 resultados para ADENYLATE-CYCLASE
Resumo:
The aim of this dissertation was to examine the hypothesis that (R)-nipecotic acid ethyl ester ((R)-NAEE) is a cholinergic agonist that is selective for a particular subclass (M$\sb1$ or M$\sb2$) of muscarinic receptors.^ Ligand binding studies indicated that like cholinergic agonists (R)-NAEE selectively interacts with rat heart (M$\sb2$) and brain (M$\sb1$) muscarinic binding sites. Physiological studies revealed that unlike cholinergic agonists (R)-NAEE stimulated only those responses coupled to M$\sb2$ muscarinic receptors (acid secretion, negative inotropic response, smooth muscle contraction). Moreover, in rat brain (R)-NAEE differentiated between M$\sb2$ receptors negatively coupled to adenylate cyclase activity and M$\sb1$ receptors mediating PI turnover, being a weak competitive antagonist at these latter sites. In isolated rat gastric mucosal cells (R)-NAEE also differentiated between two M$\sb2$ coupled responses where it potentiated acid secretion but could not stimulate PI turnover. Atropine, a selective antimuscarinic agent, competitively antagonized all agonist effects of (R)-NAEE.^ Unlike (R)-NAEE, the muscarinic agonist arecoline, which is structurally similar to (R)-NAEE, stimulates both M$\sb1$ and M$\sb2$ receptors. Structure activity studies revealed that saturation of the piperidine ring and the length of the ester side chain of (R)-NAEE are the most important determinants for both M$\sb2$ efficacy and selectivity.^ The results of this dissertation establish that (R)-NAEE is a cholinergic muscarinic receptor agonist that displays greater efficacy at M$\sb2$ than at M$\sb1$ receptors, being a weak antagonist at the M$\sb1$ site. With such selectivity, (R)-NAEE may be regarded as a prototype for a unique class of cholinergic muscarinic M$\sb2$ receptor agonists. Because of these unique properties, (R)-NAEE should be useful in the further characterization of muscarinic receptors, and could lead to the development of a new class of therapeutic agents. ^
Resumo:
In normal lymphocytes an “inside-out” signal up-regulating integrin adhesion is followed by a ligand mediated “outside-in” signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that “inside-out” signaling for the integrin α4β1 proceeds through phosphatidylinositol specific PLC and PKC, while the “outside-in” signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, β1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-β1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, α4β1 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the α4β1 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^
Resumo:
Regulatory T cells (T(reg)) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+)CD25(+) T(reg) were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+)CD25(-) T(reg). To obtain more insights in the specific function of T(reg) during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg) are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.
Resumo:
Proper immune system function is dependent on positive and negative regulation of T cell signaling pathways. Full T cell activation requires sequential signaling through the T cell receptor (TCR), costimulatory molecules and the IL-2 receptor (IL-2R). The IL-2R associated Janus tyrosine kinase 3 (Jak3), as well as Signal transducer and activator of transcription 5 (Stat5), are required for normal T cell function and survival. Constitutive activation of Jak3 and Stat5 have been linked to cancers of hematopoietic origin, including certain lymphomas and leukemias. ^ The production of cAMP by adenylate cyclase has been shown to negatively regulate human TCR mediated cell proliferation. Since cAMP has been shown to negatively regulate T cell activation, we sought to investigate whether crosstalk exists between cAMP and IL-2R signaling. The first objective of this study was to determine the effect of cAMP on the activation of IL-2R signaling molecules Jak3 and Stat5. We found that the potent adenylate cyclase activator, forskolin, inhibited IL-2 activation of Jak3 and Stat5. Indeed, in vitro kinase assays and electrophoretic mobility shift assays verified a loss of Jak3 enzymatic activity and Stat5 DNA binding ability, respectively. Further analysis of IL-2R signaling showed that forskolin treatment reduced IL-2 induced association of the IL-2Rβ and γc chain. ^ Because cAMP activates protein kinase A (PKA), the second objective was to determine the role for PKA in the cAMP directed regulation of IL-2R signaling intermediates. Interestingly, forskolin induced serine phosphorylation of Jak3, suggesting that cAMP can directly regulate Jak3 via activation of a serine/threonine kinase. Indeed, phosphoamino acid analysis revealed that PKA was able to induce Jak3 serine phosphorylation in the human leukemia cell line MT-2. In addition, in vitro kinase assays established that PKA can directly inhibit Jak3 enzymatic activity. Collectively, these data indicate that cAMP negatively regulates IL-2R signaling via various effector molecules by a previously unrecognized mechanism. This new data suggests that the Jak3/Stat5 pathway may be regulated by various pharmacological agents that stimulate cAMP production and thus can be used to uncouple some types of T cell mediated diseases. ^
Resumo:
The understanding of the molecular mechanisms leading to peptide action entails the identification of a core active site. The major 28-aa neuropeptide, vasoactive intestinal peptide (VIP), provides neuroprotection. A lipophilic derivative with a stearyl moiety at the N-terminal and norleucine residue replacing the Met-17 was 100-fold more potent than VIP in promoting neuronal survival, acting at femtomolar–picomolar concentration. To identify the active site in VIP, over 50 related fragments containing an N-terminal stearic acid attachment and an amidated C terminus were designed, synthesized, and tested for neuroprotective properties. Stearyl-Lys-Lys-Tyr-Leu-NH2 (derived from the C terminus of VIP and the related peptide, pituitary adenylate cyclase activating peptide) captured the neurotrophic effects offered by the entire 28-aa parent lipophilic derivative and protected against β-amyloid toxicity in vitro. Furthermore, the 4-aa lipophilic peptide recognized VIP-binding sites and enhanced choline acetyltransferase activity as well as cognitive functions in Alzheimer’s disease-related in vivo models. Biodistribution studies following intranasal administration of radiolabeled peptide demonstrated intact peptide in the brain 30 min after administration. Thus, lipophilic peptide fragments offer bioavailability and stability, providing lead compounds for drug design against neurodegenerative diseases.
Resumo:
This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.
Resumo:
Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals.
Resumo:
The gene encoding the mouse vitamin D receptor has been cloned. A new exon 1 has been found that changes the numbering established for the human VDR gene. Exons 2 and 3 in the human VDR gene (coding for the zinc fingers 1 and 2, respectively) are named exons 3 and 4 in the mouse vitamin D receptor. The 1.5-kb 5′-flanking region of the new exon 1 was analyzed and revealed the presence of putative cis-acting elements. Despite the absence of a TATA box, this 5′-flanking region contains several characteristics of a GC-rich promoter including four Sp1 sites present in tandem and two CCAAT boxes. Interestingly, the Sp1 site that is the most proximal to the new exon 1 overlaps a perfect site for Krox-20/24. Krox-20 is a transcription factor involved in brain development, and also in bone remodeling. In luciferase reporter gene expression assays, we showed that sequences from this 5′-flanking region elicit high transactivation activity. Furthermore, in the NIH 3T3 cell line, a 3- to 5-fold increase in response to forskolin treatment (an activator of adenylate cyclase and in turn of protein kinase A pathway) was observed.
Resumo:
Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.
Resumo:
The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates the translation of ribosomal protein (r-protein) mRNAs. In Saccharomyces cerevisiae, the TOR pathway similarly regulates general translational initiation, but its specific role in the synthesis of ribosomal components is not well understood. Here we demonstrate that in yeast control of ribosome biosynthesis by the TOR pathway is surprisingly complex. In addition to general effects on translational initiation, TOR exerts drastic control over r-protein gene transcription as well as the synthesis and subsequent processing of 35S precursor rRNA. We also find that TOR signaling is a prerequisite for the induction of r-protein gene transcription that occurs in response to improved nutrient conditions. This induction has been shown previously to involve both the Ras-adenylate cyclase as well as the fermentable growth medium–induced pathways, and our results therefore suggest that these three pathways may be intimately linked.
Resumo:
Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1β, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter–luciferase constructs identified a unique −555/−513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (−624/−556 bp) essential for PKC and cAMP stimulation. DNA–protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.
Resumo:
We purified from Dictyostelium lysates an 88-kDa protein that bound to a subset of small GTPases, including racE, racC, cdc42Hs, and TC4ran, but did not bind to R-ras or rabB. Cloning of the gene encoding this 88-kDa protein revealed that it contained multiple armadillo-like repeats most closely related to the mammalian GTP exchange factor smgGDS. We named this protein darlin (Dictyostelium armadillo-like protein). Disruption of the gene encoding darlin demonstrated that this protein is not essential for cytokinesis, pinocytosis, phagocytosis, or development. However, the ability of darlin null cells to aggregate in response to starvation is severely affected. When starved under liquid medium, the mutant cells were unable to form aggregation centers and streams, possibly because of a defect in cAMP relay signaling. This defect was not due to an inability of the darlin mutants to activate adenylate cyclase in response to G protein stimulation. These results suggest that the darlin protein is involved in a signaling pathway that may modulate the chemotactic response during early development.
Resumo:
The proliferation of various tumors is inhibited by the antagonists of growth hormone-releasing hormone (GHRH) in vitro and in vivo, but the receptors mediating the effects of GHRH antagonists have not been identified so far. Using an approach based on PCR, we detected two major splice variants (SVs) of mRNA for human GHRH receptor (GHRH-R) in human cancer cell lines, including LNCaP prostatic, MiaPaCa-2 pancreatic, MDA-MB-468 breast, OV-1063 ovarian, and H-69 small-cell lung carcinomas. In addition, high-affinity, low-capacity binding sites for GHRH antagonists were found on the membranes of cancer cell lines such as MiaPaCa-2 that are negative for the vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptor (VPAC-R) or lines such as LNCaP that are positive for VPAC-R. Sequence analysis of cDNAs revealed that the first three exons in SV1 and SV2 are replaced by a fragment of retained intron 3 having a new putative in-frame start codon. The rest of the coding region of SV1 is identical to that of human pituitary GHRH-R, whereas in SV2 exon 7 is spliced out, resulting in a 1-nt upstream frameshift, which leads to a premature stop codon in exon 8. The intronic sequence may encode a distinct 25-aa fragment of the N-terminal extracellular domain, which could serve as a proposed signal peptide. The continuation of the deduced protein sequence coded by exons 4–13 in SV1 is identical to that of pituitary GHRH-R. SV2 may encode a GHRH-R isoform truncated after the second transmembrane domain. Thus SVs of GHRH-Rs have now been identified in human extrapituitary cells. The findings support the view that distinct receptors are expressed on human cancer cells, which may mediate the antiproliferative effect of GHRH antagonists.
Resumo:
A series of nonpeptide somatostatin agonists which bind selectively and with high affinity to somatostatin receptor subtype 2 (sst2) have been synthesized. One of these compounds, L-054,522, binds to human sst2 with an apparent dissociation constant of 0.01 nM and at least 3,000-fold selectivity when evaluated against the other somatostatin receptors. L-054,522 is a full agonist based on its inhibition of forskolin-stimulated adenylate cyclase activity in Chinese hamster ovary-K1 cells stably expressing sst2. L-054,522 has a potent inhibitory effect on growth hormone release from rat primary pituitary cells and glucagon release from isolated mouse pancreatic islets. Intravenous infusion of L-054,522 to rats at 50 μg/kg per hr causes a rapid and sustained reduction in growth hormone to basal levels. The high potency and selectivity of L-054,522 for sst2 will make it a useful tool to further characterize the physiological functions of this receptor subtype.
Resumo:
Different truncated and conformationally constrained analogs of corticotropin-releasing factor (CRF) were synthesized on the basis of the amino acid sequences of human/rat CRF (h/rCRF), ovine CRF (oCRF), rat urocortin (rUcn), or sauvagine (Svg) and tested for their ability to displace [125I-Tyr0]oCRF or [125I-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 (rCRFR1), or mouse CRF receptor, type 2β (mCRFR2β). Furthermore, the potency of CRF antagonists to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRFR1 (HEK-rCRFR1 cells) or mCRFR2β (HEK-mCRFR2β cells) was determined. In comparison with astressin, which exhibited a similar affinity to rCRFR1 (Kd = 5.7 ± 1.6 nM) and mCRFR2β (Kd = 4.0 ± 2.3 nM), [dPhe11,His12]Svg(11–40), [dLeu11]Svg(11–40), [dPhe11]Svg(11–40), and Svg(11–40) bound, respectively, with a 110-, 80-, 68-, and 54-fold higher affinity to mCRFR2β than to rCRFR1. The truncated analogs of rUcn displayed modest preference (2- to 7-fold) for binding to mCRFR2β. In agreement with the results of these binding experiments, [dPhe11,His12]Svg(11–40), named antisauvagine-30, was the most potent and selective ligand to suppress agonist-induced adenylate cyclase activity in HEK cells expressing mCRFR2β.