988 resultados para ADDED COHERENT STATES
Resumo:
We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods.
Resumo:
We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (nonadaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy of adaptive phase estimation is present in a regime conducive to observing it experimentally.
Resumo:
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.
Resumo:
We present phase-space techniques for the modelling of spontaneous emission in two-level bosonic atoms. The positive-P representation is shown to give a full and complete description within the limits of our model. The Wigner representation, even when truncated at second order, is shown to need a doubling of the phase-space to allow for a positive-definite diffusion matrix in the appropriate Fokker-Planck equation and still fails to agree with the full quantum results of the positive-P representation. We show that quantum statistics and correlations between the ground and excited states affect the dynamics of the emission process, so that it is in general non-exponential. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.
Resumo:
We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anticommuting Grassmann variables. Furthermore, because of the overcompleteness of the basis, the phase-space distribution can always be chosen positive. This has important consequences for the sign problem in fermion physics.
Resumo:
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using coherent states and experimentally measure fidelities that are only achievable using quantum resources.
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.
Resumo:
Using the technique of stimulated Raman adiabatic passage, we propose schemes for creating arbi- trary coherent superposition states of atoms in four-level systems: a A-type system with twofold final states and a four-level ladder system. With the use of a control field, arbitrary coherent superposition states are created without the condition of multiphoton resonance. Suitable manipulation of detunings and the control field can create either a single state or any superposition states desired. (c) 2005 Pleiades Publishing, Inc.
Resumo:
We investigate the fluorescence spectrum in a nearly degenerate atomic system of a F-e = 0 -> F-g = 1 transition by analytically solving Schrodinger equations. An ultranarrow fluorescence spectral line in between the two coherent population trapping windows has been found. Our analytic solutions clearly show the origin of the ultranarrow spectral line. Due to quantum interference effects between two coherent population trapping states, the width and intensity of the central spectral line can be controlled by an external magnetic field. Such an effect may be used to detect a magnetic field.
Resumo:
Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.
Resumo:
UANL