150 resultados para ADAM10 endopeptidase
Resumo:
The melanoma-associated protein Melan-A contains the immunodominant CTL epitope Melan-A(26/27-35)/HLA-A*0201 against which a high frequency of T lymphocytes has been detected in many melanoma patients. In this study we show that the in vitro degradation of a polypeptide encompassing Melan-A(26/27-35) by proteasomes produces both the final antigenic peptide and N-terminally extended intermediates. When human melanoma cells expressing the corresponding fragments were exposed to specific CTL, those expressing the minimal antigenic sequence were recognized more efficiently than those expressing the N-terminally extended intermediates. Using a tumor-reactive CTL clone, we confirmed that the recognition of melanoma cells expressing an N-terminally extended intermediate of Melan-A is inefficient. We demonstrated that the inefficient cytosolic trimming of N-terminally extended intermediates could offer a selective advantage for the preferred presentation of Melan-A peptides directly produced by the proteasomes. These results imply that both the proteasomes and postproteasomal peptidases limit the availability of antigenic peptides and that the efficiency of presentation may be affected by conditions that alter the ratio between fully and partially processed proteasomal products.
Resumo:
Immune responses against tumor-associated antigens rely on efficient epitope presentation. The melanoma-associated antigen (Ag) gp100 contains HLA-A*0201 ligands that are characterized by low to medium binding affinity, among which gp100(209-217) is the most prominent (Kawakami et al., J Immunol 154:3961-3968, 1995). While this epitope is a natural T-cell target, it primes with low-efficiency T-cell responses during immunization. A modified gp100 epitope, gp100(209-217T210M), that contains a Thr to Met substitution at position 2 of the antigenic nonamer is characterized by high binding affinity for HLA-A*0201 and elicits strong and clinically effective T-cell responses. This higher affinity is believed to represent the sole reason for enhanced immunogenicity. Contrasting with this observation is the unpredictable relationship between affinity and immunogenicity observed in other antigen systems. In addition, we noted a striking difference between the capability of endogenously processed gp100(209-217) and gp100(209-217T210M) to induce T-cell responses in an in vitro model. Therefore, we questioned whether factors other than HLA-affinity might play a role in determining the immunogenicity of these epitopes. In the present study, we evaluated the in vitro proteasomal cleavages of 23meric precursor peptides encompassing the native sequence (gp100(201-223)) or the modified sequence (gp100(201-223T210M)). Here we show that the standard proteasome liberates the C-termini of both antigenic peptides but not the N-termini. Quantitative analysis of the digestion products revealed that more of the fragments displaying the final C-termini were produced from the wild-type precursor. However, a stronger TCR engagement was observed when fractions of digested gp100(201-223T210M) were used to activate an HLA-A*0201-expressing target T-cell clone. This difference was also found using separately produced, synthetic nonamers. In conclusion, the high binding affinity of gp100(209-217T210M) seems to compensate for possible differences in proteasomal cleavage at the biological level. Since the final antigenic nonamer is not directly produced by the proteasome, additional further factors may influence the antigenic peptide availability, such as post-proteasomal processing and intracellular peptide transport.
Resumo:
High-grade gliomas represent a group of aggressive brain tumors with poor prognosis due to an inherent capacity of persistent cell growth and survival. The ubiquitin-proteasome system (UPS) is an intracellular machinery responsible for protein turnover. Emerging evidence implicates various proteins targeted for degradation by the UPS in key survival and proliferation signaling pathways of these tumors. In this review, we discuss the involvement of UPS in the regulation of several mediators and effectors of these pathways in malignant gliomas.
Resumo:
Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.
Resumo:
The formation of toxic protein aggregates is a common denominator to many neurodegenerative diseases and aging. Accumulation of toxic, possibly infectious protein aggregates induces a cascade of events, such as excessive inflammation, the production of reactive oxygen species, apoptosis and neuronal loss. A network of highly conserved molecular chaperones and of chaperone-related proteases controls the fold-quality of proteins in the cell. Most molecular chaperones can passively prevent protein aggregation by binding misfolding intermediates. Some molecular chaperones and chaperone-related proteases, such as the proteasome, can also hydrolyse ATP to forcefully convert stable harmful protein aggregates into harmless natively refoldable, or protease-degradable, polypeptides. Molecular chaperones and chaperone-related proteases thus control the delicate balance between natively folded functional proteins and aggregation-prone misfolded proteins, which may form during the lifetime and lead to cell death. Abundant data now point at the molecular chaperones and the proteases as major clearance mechanisms to remove toxic protein aggregates from cells, delaying the onset and the outcome of protein-misfolding diseases. Therapeutic approaches include treatments and drugs that can specifically induce and sustain a strong chaperone and protease activity in cells and tissues prone to toxic protein aggregations.
Resumo:
The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.
Resumo:
Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.
Resumo:
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.
Resumo:
To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.
Resumo:
Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO) is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS) for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2(+)-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue), might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans.
Resumo:
Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.
Resumo:
We describe the changes in peptide composition by SDS-PAGE analysis of latex from Carica papaya collected at various times after incision of the unripe fruit. The data show that during latex coagulation several peptides are processed in an orderly fashion.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM) and for atrial natriuretic peptide (Km = 5 µM) suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.
Resumo:
The kallikrein-kinin system is complex, with several bioactive peptides that are formed in many different compartments. Kinin peptides are implicated in many physiological and pathological processes including the regulation of blood pressure and sodium homeostasis, inflammatory processes, and the cardioprotective effects of preconditioning. We established a methodology for the measurement of individual kinin peptides in order to study the function of the kallikrein-kinin system. The levels of kinin peptides in tissues were higher than in blood, confirming the primary tissue localization of the kallikrein-kinin system. Moreover, the separate measurement of bradykinin and kallidin peptides in man demonstrated the differential regulation of the plasma and tissue kallikrein-kinin systems, respectively. Kinin peptide levels were increased in the heart of rats with myocardial infarction, in tissues of diabetic and spontaneously hypertensive rats, and in urine of patients with interstitial cystitis, suggesting a role for kinin peptides in the pathogenesis of these conditions. By contrast, blood levels of kallidin, but not bradykinin, peptides were suppressed in patients with severe cardiac failure, suggesting that the activity of the tissue kallikrein-kinin system may be suppressed in this condition. Both angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP) inhibitors increased bradykinin peptide levels. ACE and NEP inhibitors had different effects on kinin peptide levels in blood, urine, and tissues, which may be accounted for by the differential contributions of ACE and NEP to kinin peptide metabolism in the multiple compartments in which kinin peptide generation occurs. Measurement of the levels of individual kinin peptides has given important information about the operation of the kallikrein-kinin system and its role in physiology and disease states.