914 resultados para ACUTE EXERCISE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
INTRODUÇÃO:As respostas ao exercício agudo dos biomarcadores, como a fosfatase alcalina (FA) e a creatina quinase (CK) séricas têm sido pouco investigadas em ratos diabéticos.OBJETIVOS:Verificar os efeitos do exercício físico aeróbio agudo sobre as concentrações de CK e FA, bem como, avaliar o estado hídrico em ratos diabéticos experimentais.MATERIAIS E MÉTODOSForam utilizados ratos Wistar machos, adultos jovens, distribuídos em dois grupos: diabéticos (DA) e controles (CA). O diabetes foi induzido por meio da administração de aloxana monoidratado Sigma(r) (32 mg/kg de peso corporal). Duas semanas após confirmação do diabetes, ambos os grupos foram submetidos a uma sessão aguda de natação por 30 min, com carga aeróbia (4,5 % do peso corporal). Foram avaliados: glicose, hematócrito, CK, FA, albumina e a cinética de lactato durante o exercício por meio de coletas 25 µL de sangue da cauda dos animais, nos minutos 0, 10, 20 e 30 de exercício.RESULTADOS:ANOVA de dois fatores para medidas repetidas e o teste post hoc de Tukey apontaram diminuição significativa dos valores de glicemia após o exercício para o grupo DA, aumento significativo de CK pós-exercício para o grupo DA, aumento significativo de hematócrito para ambos os grupos após exercício e manutenção da FA após exercício para o grupo DA.CONCLUSÃO:O exercício agudo aeróbio foi eficiente no controle dos níveis glicêmicos de ratos diabéticos. Entretanto, deve ser aplicado com cautela, pois induziu altos valores de CK, sugerindo possíveis lesões teciduais.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Einleitung Die Annahme, dass Sport nicht nur positive Effekte auf die körperliche Gesundheit, sondern auch auf die kognitive Leistung haben kann, konnte anhand experimenteller Studien mit Erwachsenen weitgehend bestätigt werden. Ob dieselben Effekte auch bei Kindern und Jugendlichen vorzufinden sind, kann mit Blick auf die mangelnde empirische Evidenz in dieser Altersgruppe kaum zufriedenstellend beantwortet werden (Chang et al., 2012). Will man zudem der Frage nach den Wirkmechanismen nachgehen, sind Unter-suchungsdesigns angezeigt, die theoriegeleitet verschiedene Sportinterventionen mit unterschiedlichen Beanspruchungsmodalitäten kombinieren. So ist unter der Annahme der cardiovascular fitness hypothesis (Etnier et al., 2006) zur gezielten Förderung der kognitiven Leistungsfähigkeit ein systematisches Ausdauertraining sinnvoll, während theoretische Ansätze, die neurophysiologische Korrelate zur Erklärung des Zusammenhangs zwischen Sport und Kognition heranziehen (Diamond, 2000) eher kognitiv sowie koordinativ anspruchsvolle Sportangebote nahelegen würden. Daher geht der vorliegende Beitrag der Frage nach, ob spezifisch konzipierte langfristige Interventionen im Sportunterricht einen spezifischen Effekt auf die kognitive Leistungsfähigkeit von Primarschulkindern haben können. Methode Im Rahmen der quasiexperimentellen Längsschnittstudie „Sport und Kognition“ (SpuK_5.0) wurden insgesamt 250 Schülerinnen und Schüler von 16 fünften Klassen untersucht. Während knapp zwei Monaten absolvierten je vier Klassen während zwei Lektionen des obligatorischen Sportunterrichts entweder ein spielsportbezogenes EF-Training oder ein Ausdauertraining resp. ein kognitives oder kein spezifisches Training (Kontrollgruppe mit regulärem Sportunterricht). Durch die Konzeption dieser vier Experi-mentalbedingungen wurde sichergestellt, dass alle vier möglichen Kombinationen aus hoher resp. niedriger kognitiver und körperlicher Beanspruchung im Design repräsentiert waren. Ergebnisse und Diskussion Im Beitrag werden erste Ergebnisse der noch laufendenden SpuK_5.0-Studie vorgestellt und vor dem Hintergrund aktueller theoretischer Annahmen zu den zugrundeliegenden Wirkmechanismen diskutiert. Literatur Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cere-bellum and prefrontal cortex. Child Development, 71, 44-56. Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the rela-tionship between aerobic fitness and cognitive performance. BRAIN RESEARCH, 52, 119-130.
Resumo:
CHAPTER II - This study evaluated the effects of two different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of two types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29 ± 0.1 to 2.33 ± 0.09 after MICE and from 2.30 ± 0.08 to 2.23 ± 0.12 after HIIE. In MICE has occurred an increase in the mean corpuscular volume, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected the erythrocyte osmotic stability, which increased after MICE and decreased after HIIE.
Resumo:
The foundations for cardiovascular disease (CVD) in adults are laid in childhood and accelerated by the presence of comorbid conditions. Early detection of manifestations of cardiovascular pathology is an important clinical objective to identify those at risk for subsequent cardiovascular morbidity and events, and to initiate behavioral and medical interventions to reduce risk. Children were once considered to be at low risk, but with the growing health concerns related to lifestyle, cardiovascular screening may be needed earlier. Several noninvasive procedures are available to assess the cumulative effect of these exposures. These include carotid ultrasound, flow-mediated dilation, pulse wave velocity and measures left ventricular mass. This dissertation analyzes the comorbid conditions that increase cardiovascular risk in youth, namely obesity and low physical fitness, using carotid intima-media thickness to objectively detect early manifestations of cardiovascular pathology. Until recently researchers have not used surrogate markers of subclinical atherosclerosis to examine the role of a single bout of exercise. Utilizing the acute exercise model can be advantageous as it allows for an efficient manipulation of exercise variables and permits greater experimental control of confounding variables. It is possible that the effects of a bout of exercise can predict the effects of chronic exercise. We analyze the physiological factors pertinent to arterial stiffness using arterial distensibility and pulse wave velocity in the context of acute exercise in children and adults. In some instances, those who amend their trajectory by not maintaining risk factors into adulthood experience reductions in subclinical markers to levels associated with never having had the risk factor. Though avoidance of risk factors in youth is ideal, there is still a window for intervention where long-lasting cardiovascular effects might be avoided. In this dissertation we present preliminary findings linking modifiable youth risk factors to subclinical markers of CVD in adulthood.
Resumo:
The efficacy of exercise to promote weight loss could potentially be undermined by its influence on explicit or implicit processes of liking and wanting for food which in turn alter food preference. The present study was designed to examine hedonic and homeostatic mechanisms involved in the acute effects of exercise on food intake. 24 healthy female subjects were recruited to take part in two counterbalanced activity sessions; 50 min of high intensity (70% max heart rate) exercise (Ex) or no exercise (NEx). Subjective appetite sensations, explicit and implicit hedonic processes, food preference and energy intake (EI) were measured immediately before and after each activity session and an ad libitum test meal. Two groups of subjects were identified in which exercise exerted different effects on compensatory EI and food preference. After exercise, compensators (C) increased their EI, rated the food to be more palatable, and demonstrated increased implicit wanting. Compensators also showed a preference for high-fat sweet food compared with non-compensators (NC), independent of the exercise intervention. Exercise-induced changes in the hedonic response to food could be an important consideration in the efficacy of using exercise as a means to lose weight. An enhanced implicit wanting for food after exercise may help to explain why some people overcompensate during acute eating episodes. Some individuals could be resistant to the beneficial effects of exercise due to a predisposition to compensate for exercise-induced energy expenditure as a result of implicit changes in food preferences.
Resumo:
Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.
Resumo:
Purpose of review: To examine the relationship between energy intake, appetite control and exercise, with particular reference to longer term exercise studies. This approach is necessary when exploring the benefits of exercise for weight control, as changes in body weight and energy intake are variable and reflect diversity in weight loss. Recent findings: Recent evidence indicates that longer term exercise is characterized by a highly variable response in eating behaviour. Individuals display susceptibility or resistance to exercise-induced weight loss, with changes in energy intake playing a key role in determining the degree of weight loss achieved. Marked differences in hunger and energy intake exist between those who are capable of tolerating periods of exercise-induced energy deficit, and those who are not. Exercise-induced weight loss can increase the orexigenic drive in the fasted state, but for some this is offset by improved postprandial satiety signalling. Summary: The biological and behavioural responses to acute and long-term exercise are highly variable, and these responses interact to determine the propensity for weight change. For some people, long-term exercise stimulates compensatory increases in energy intake that attenuate weight loss. However, favourable changes in body composition and health markers still exist in the absence of weight loss. The physiological mechanisms that confer susceptibility to compensatory overconsumption still need to be determined.
Resumo:
Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.
Resumo:
Interaction between the endocrine and immune system is necessary to regulate our health. However, under some conditions, stress hormones can overstimulate or suppress the immune system, resulting in harmful consequences (1). Stress is often considered negative, yet it is an intrinsic part of everyday life. Stress is not clearly defined; it is context-specific and depends on the nature of factors that challenge our body. Internal stimuli will elicit different stress reactions compared with external stimuli (1). Similarly, some stressors will induce responses that may benefit survival, whereas others will cause disturbances that may endanger our health. Stress also depends on how our bodies perceive and respond to stressful stimuli (1).
Resumo:
Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine
Resumo:
Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes. Purpose We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise. Methods Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22+-0.5 yrs) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80% 1 RM. Results Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68+ macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent. Conclusion In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.
Resumo:
This study investigated the influence of two different intensities of acute interval exercise on food preferences and appetite sensations in overweight and obese men. Twelve overweight/obese males (age=29.0±4.1 years; BMI =29.1±2.4 kg/m2) completed three exercise sessions: an initial graded exercise test, and two interval cycling sessions: moderate-(MIIT) and high-intensity (HIIT) interval exercise sessions on separate days in a counterbalanced order. The MIIT session involved cycling for 5-minute repetitions of alternate workloads 20% below and 20% above maximal fat oxidation. The HIIT session consisted of cycling for alternate bouts of 15 seconds at 85% VO2max and 15 seconds unloaded recovery. Appetite sensations and food preferences were measured immediately before and after the exercise sessions using the Visual Analogue Scale and the Liking & Wanting experimental procedure. Results indicated that liking significantly increased and wanting significantly decreased in all food categories after both MIIT and HIIT. There were no differences between MIIT and HIIT on the effect on appetite sensations and Liking & Wanting. In conclusion, manipulating the intensity of acute interval exercise did not affect appetite and nutrient preferences.