998 resultados para ACID PHOSPHATASE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as H-1 and P-31 NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase, However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glc beta(1-3)](1-2)Gal beta 1-4Man, Gal beta 1-3Gal beta 1-4Man, Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta 1-4Man) but carrying stage-specific modifications (R = Gal beta 1-, [Glc beta 1-3](1-2)Glc beta 1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glc beta 1-3Gal beta 1-4Man, PO4-6-Glc beta 1-3Glc beta 1-3Gal beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3 [PO4-6-Gal]beta 1-4Man, PO4-6-GaL beta 1-3Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6Gal beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, and PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man. These glycans are linked together by the conserved phosphodiester R-Man alpha 1-PO4-6-Gal-R or the novel phosphodiester R-Man alpha 1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Man alpha 1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biochemical properties of the alkaline phosphatases (AIPs) produced by Rhizopus micro-sporus are described. High enzymic levels were produced within 1-2 d in agitated cultures with 1% wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3x, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn(2+), Na(+) and Mg(2+) Stimulated the activity, while Al(3+) and Zn(2+) activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 degrees C and pH 8.0, respectively. The enzymes were stable at 50 degrees C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K(m) 0.28 and 0.22 mmol/L, with upsilon(lim) 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: It has long been demonstrated that epidermal growth factor (EGF) has catabolic effects oil bone. Thus. we examined the role of EGF in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. Main methods: The maxillary first molars of rats were moved mesially using an orthodontic appliance attached to the maxillary incisor teeth. Rats were randomly divided into 4 groups: (G1) administration of PBS (Phosphate buffer saline Solution (n = 24); (G2) administration of empty liposomes (it = 24): (Q) administration 20 rig of EGF Solution (n = 24): and (G4) 20 ng of EGF-liposomes Solution (it = 24). Each Solution was injected in the mucosa of the left first molar adjacent to the appliance. At days 5, 10, 14 and 2 1 after drug administration. 6 animals of each group were sacrificed. Histomorphometric analysis was used to quantify osteoclasts (Tartrate-resistant acid phosphatase (TRAP) + cells) and tooth movement. Using immunohistochemistry assay we evaluated the RANKL (receptor activator of nuclear factor kappa B ligand) and epidermal growth factor receptor (EGFR) expression. Key findings: The EGF-liposome administration showed an increased tooth movement and osteoclast numbers compared to controls (p<0.05). This was correlated with intense RANKL expression. Both osteoblasts and osteoclasts expressed EGFR. Significance: Local delivery of EGF-liposome stimulates, osteoclastogenesis and tooth movement. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the influence of estrogen deficiency on bone around osseointegrated dental implants in a rat jaw model. Materials and Methods: This study used 16 female rats that had the first molars bilaterally extracted and were allowed to heal for 30 days before implant placement. Sixty days after implant placement, the animals were randomly subjected to sham surgery or ovariectomy (OVX). The animals were euthanized 90 days after OVX. Bone-to-implant contact, bone area fraction occupancy between implant threads, mineral density, turnover markers, and cells positive for tartrate-resistant acid phosphatase were assessed for the 2 groups. Results: The results showed that OVX group presented a decrease of systemic bone density, alterations in bone turnover markers, and an increase of cells positive for tartrate-resistant acid phosphatase compared with the sham-surgery group. However, no difference relative to bone-to-implant contact and bone area fraction occupancy was observed between groups. Conclusions: The findings of this study demonstrate that estrogen deficiency may not be considered a risk factor for osseointegrated implant failure in jaw bone. (C) 2011 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 69:1911-1918, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To determine if systemic stress affects the biological reactions occurring during orthodontic tooth movement. Methods: Four groups of male 10 week-old Wistar rats were used. Group A animals (N=10) were restrained for one hour per day for 40 days; Group B animals (N=10) were restrained for one hour per day for three days; Group C (N=10) and Group D (N=8) animals were unrestrained. The upper left first molars in the rats in Groups A (long-term stress), B (short-term stress) and C (control) were moved mesially during the last 14 days of the experiment. The animals in Group D (N=8) were used for body weight and hormonal dosage comparisons only. They were not subjected to any stress and did not have appliances fitted. All animals were killed at 18 weeks of age and blood collected for measurement of plasma corticosterone. Tooth movement was measured with an electronic caliper. The right and left hemi-maxillae of five rats from each group were removed and the number of tartrate-resistant acid phosphatase (TRAP) positive cells, defined as osteoclasts, adjacent to the mesial roots of the upper first molars counted. The contralateral side in each animal served as the control (split-mouth design). Results: Corticosterone levels were significantly higher in the stressed groups (Groups A and B) than in the control group (Group C). Tooth movement was significantly greater in Group A (long-term stress) compared with Group B (short-term stress) and Group C (control), which did not differ from each other. There were significantly more osteoclasts in the long-term stress group than in the short-term stress and control groups. Conclusion: Persistent systemic stress increases bone resorption during orthodontic tooth movement. Systemic stress may affect the rate of tooth movement during orthodontic treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone deposition and bone resorption are ongoing dynamic processes, constituting bone remodeling. Some bone tumors, such as osteosarcoma (OS), stimulate focal bone deposition. OS is the most common primary bone tumor in children and young adults. A complex network of genes regulates bone remodeling and alterations in its expression levels can influence the genesis and progression of bone diseases, including OS. We hypothesized that the expression profiles of bone remodeling regulator genes would be correlated with OS biology and clinical features. We used real-time PCR to evaluate the mRNA levels of the tartrate-resistant acid phosphatase (ACP5), colony stimulating factor-1 (CSF1R), bone morphogenetic protein 7 (BMP7), collagen, type XI, alpha 2 (COL11A2), and protein tyrosine phosphatases zeta 1 (PTPRZ1) genes, in 30 OS tumor samples and correlated with clinical and histological data. All genes analyzed, except CSF1R, were differentially expressed when compared with normal bone expression profiles. In our results, OS patients with high levels of COL11A2 mRNA showed worse overall (p = 0.041) and event free survival (p = 0.037). Also, a trend for better overall survival was observed in patients with samples showing higher expression of BMP7 (p =0.067). COL11A2 overexpression and BMP7 underexpression could collaborate to OS tumor growth, through its central role in bone remodeling process. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1142-1148, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in palA, a gene in the pH-responsive signal transduction pathway, suppression subtractive hybridization was performed between RNA isolated from the biA1 and biA1 palA1 strains grown under limiting inorganic phosphate at pH 5.0. We have identified several genes upregulated in the biA1 palA1 mutant strain that play important roles in mitotic fidelity, stress responses, enzyme secretion, signal transduction mechanisms, development, genome stability, phosphate sensing, and transcriptional regulation among others. The upregulation of eight of these transcripts was also validated by Northern blot. Moreover, we show that a loss of function mutation in the palA gene drastically reduced the neutral sugar content of the acid phosphatase PacA secreted by the fungus A. nidulans grown at pH 5.0 compared with a control strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Collagen-degrading matrix metalloproteinases (MMPs) are expressed by odontoblasts and present in dentin. We hypothesized that odontoblasts express other collagen-degrading enzymes such as cysteine cathepsins, and their activity would be present in dentin, because odontoblasts are known to express at least cathepsin D. Effect of transforming growth factor beta (TGF-beta) on cathepsin expression was also analyzed. Methods: Human odontoblasts and pulp tissue were cultured with and without TGF-beta, and cathepsin gene expression was analyzed with DNA microarrays. Dentin cathepsin and MMP activities were analyzed by degradation of respective specific fluorogenic substrates. Results: Both odontoblasts and pulp tissue demonstrated a wide range of cysteine cathepsin expression that gave minor responses to TGF-beta. Cathepsin and MMP activities were observed in all dentin samples, with significant negative correlations in their activities with tooth age. Conclusions: These results demonstrate for the first time the presence of cysteine cathepsins in dentin and suggest their role, along with MMPs, in dentin modification with aging. (J Endod 2010;36:475-481)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F(-)) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F(-) for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F(-) intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F(-), control vs. 50 ppm F(-) and 5 ppm F(-) vs. 50 ppm F(-) groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and 0c-2,1-globulin) and one related to detoxification (aflatoxin-Bl-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F(-) toxicity, even in low doses. 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8-14, 2011; View this article online at wileyonlinelibrary.com. DOI 10:1002/jbt.20353

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-dimensional gel electrophoresis (2-DE) was used to better understand alterations in renal metabolism induced by fluoride (F). Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F for 60 days (n=6/group). Kidneys were collected for proteomic and histological (HE) analysis. After protein isolation, renal proteome profiles were examined using 2-DE and Colloidal Coomassie Blue staining. Protein spots with a 2-fold significant difference as detected by quantitative intensity analysis (image Master Platinum software) and t-test (p < 0.05) were excised and analyzed by MALDI-TOF MS (matrix assisted laser desorption ionization-time-of-flight mass spectrometry). The histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the 50 ppm F group. Between control vs 50 ppm F, and control vs 5 ppm F groups, 12 and 6 differentially expressed proteins were detected, respectively. Six proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated. Thus, proteomic analysis can provide new insights into the alterations in renal metabolism after F exposure, even in low doses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to use the MANCOVA model to study the influence of the phenotype of an enzyme - Acid phosphatase - and a genetic factor - Haptoglobin genotype - on two dependent variables - Activity of Acid Phosphatase (ACP1) and the Body Mass Index (BMI). Therefore it's used a general linear model, namely a multivariate analysis of covariance (Two-way MANCOVA). The covariate is the age of the subject. This covariate works as control variable for the independent factors, serving to reduce the error term in the model. The main results showed that only the ACP1 phenotype has a significant effect on the activity of ACP1 and the covariate has a significant effect in both dependent variables. The univariate analysis showed that ACP1 phenotype accounts for about 12.5% of the variability in the activity of ACP1. In respect to this covariate it can be seen that accounts for about 4.6% of the variability in the activity of ACP1 and 37.3% in the BMI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite its rigid structure, bone is a dynamic tissue that is in constant remodeling. This process requires the action of the bone-resorbing osteoclasts and the bone-synthesing osteoblasts. One of the adverse effects attributed to some antihypertensive agents is the ability to alter normal bone metabolism. However, their effective actions on human bone cells remain to be clarified. In this work, the effects of five calcium channel blockers, a class of antihypertensive drugs (AHDs), were investigated on osteoclastic differentiation. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AHDs (amlodipine, felodipine, diltiazem, lercanidipine and nifedipine). Cell cultures were characterized throughout a 21 day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. It was observed that the tested AHDs had the ability to differentially affect osteoclastogenesis. At low doses, amlodipine and felodipine caused an increase on osteoclastic differentiation, while the other drugs inhibited it. At higher doses, all the molecules caused a decrease on the process. The tested AHDs also showed different effects on the analysed signaling pathways. In conclusion, AHDs appeared to have a direct effect on human osteoclast precursor cells, affecting their differentiation. Interestingly, some of them increased while others inhibited the process. Unraveling the mechanisms beneath these observations might help to explain the adverse effects on bone tissue described for this drug class.