920 resultados para 983
Resumo:
Indian logic has a long history. It somewhat covers the domains of two of the six schools (darsanas) of Indian philosophy, namely, Nyaya and Vaisesika. The generally accepted definition of Indian logic over the ages is the science which ascertains valid knowledge either by means of six senses or by means of the five members of the syllogism. In other words, perception and inference constitute the subject matter of logic. The science of logic evolved in India through three ages: the ancient, the medieval and the modern, spanning almost thirty centuries. Advances in Computer Science, in particular, in Artificial Intelligence have got researchers in these areas interested in the basic problems of language, logic and cognition in the past three decades. In the 1980s, Artificial Intelligence has evolved into knowledge-based and intelligent system design, and the knowledge base and inference engine have become standard subsystems of an intelligent system. One of the important issues in the design of such systems is knowledge acquisition from humans who are experts in a branch of learning (such as medicine or law) and transferring that knowledge to a computing system. The second important issue in such systems is the validation of the knowledge base of the system i.e. ensuring that the knowledge is complete and consistent. It is in this context that comparative study of Indian logic with recent theories of logic, language and knowledge engineering will help the computer scientist understand the deeper implications of the terms and concepts he is currently using and attempting to develop.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,
Resumo:
The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America
Resumo:
The effects of 100 MeV Oxygen and 200 MeV Silver ions on the structural and transport properties of YBCO thin films are reported. Both normal state and superconducting properties were studied on Laser ablated and high pressure oxygen sputtered films. Precise electrical resistance and critical current measurements near T-c were made and the data obtained were analysed in the light of existing models of para-coherence near T-c and the other aspects of radiation damage arising from microstructural studies such as atomic force microscopy (AFM). There was evidence of sputtering by high energy ions from AFM measurement. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The oxygen content of La0.5Ca0.5MnOy was tuned by annealing the samples at high temperatures in flowing nitrogen with graphite powder nearby. The reduction of oxygen content has dramatic effect on the electrical transport and magnetic properties. The samples with y=2.983, 2.83, and 2.803 show an insulator-metal transition, and an unusual temperature and magnetic-field dependence of the magnetoresistance. The paramagnetic-ferromagnetic transition also shifts to lower temperatures and the antiferromagnetic transition at lower temperature is suppressed. The results are discussed in terms of the effect of oxygen vacancies on the various properties of La0.5Ca0.5MnOy. (C) 2002 American Institute of Physics.
Resumo:
A systematic study on the variation of Mössbauer hyperfine parameters with grain size in nanocrystalline zinc ferrite is lacking. In the present study, nanocrystalline ZnFe2O4 ferrites with different grain sizes were prepared by ball-milling technique and characterised by X-ray, EDAX, magnetisation and Mössbauer studies. The grain size decreases with increasing milling time and lattice parameter is found to be slightly higher than the bulk value. Magnetisation at room temperature (RT) and at 77 K could not be saturated with a magnetic field of 7 kOe and the observed magnetisation at these temperatures can be explained on the basis of deviation of cation distribution from normal spinel structure. The Mössbauer spectra were recorded at different temperatures between RT and 16 K. The values of quadrupole splitting at RT are higher for the milled samples indicating the disordering of ZnFe2O4 on milling. The strength of the magnetic hyperfine interactions increases with grain size reduction and this can be explained on the basis of the distribution of Fe3+ ions at both tetrahedral and octahedral sites.
Resumo:
The high temperature ceramic oxide superconductor YBa2Cu3O7-x (1–2–3 compound) is generally synthesized in an oxygen-rich environment. Hence any method for determining its thermodynamic stability should operate at a high oxygen partial pressure. A solid-state cell incorporating CaF2 as the electrolyte and functioning under pure oxygen at a pressure of 1·01 × 105 Pa has been employed for the determination of the Gibbs’ energy of formation of the 1–2–3 compound. The configuration of the galvanic cell can be represented by: Pt, O2, YBa2Cu3O7−x , Y2BaCuO5, CuO, BaF2/CaF2/BaF2, BaZrO3, ZrO2, O2, Pt. Using the values of the standard Gibbs’ energy of formation of the compounds BaZrO3 and Y2BaCuO5 from the literature, the Gibbs’ energy of formation of the 1–2–3 compound from the constituent binary oxides has been computed at different temperatures. The value ofx at each temperature is determined by the oxygen partial pressure. At 1023 K for O content of 6·5 the Gibbs’ energy of formation of the 1–2–3 compound is −261·7 kJ mol−1.
Resumo:
The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.
Resumo:
The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Metal-slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.