926 resultados para 680303 Polymeric materials (e.g. paints)
Resumo:
A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.
Resumo:
This study evaluated the effects of incorporating an additive from an agro-industrial residue, after some chemical modification reactions, to petroleum asphalt cement (CAP) through the polymerization reaction of a viscous polyol obtained by bagasse biomass oxypropylation reaction sugarcane with anhydrides. The polyol is obtained by biomass oxypropylation reaction with propylene oxide, the reaction was performed in an autoclave sealed with pressure and temperature control using 25 mL of OP for every 5 grams of biomass 200°C, which time reaction was two hours. The reaction is revealed by varying the system pressure, initially at atmospheric pressure to reach a maximum pressure value and its subsequent return to atmospheric pressure. For the choice of the most suitable reaction time for polymerization of the polyol with pyromellitic anhydride, the reaction was also conducted in an autoclave sealed with temperature controller (150 ° C) using 20 g of polyol, 1 g of sodium acetate (catalyst) and 8 g of pyromellitic anhydride with the times 30 and 60 minutes. The polymerized materials with different times were characterized by determining the relative viscosity and percentage content of extractable in cyclohexane / ethanol. Given the results with the polymerized material 30 minutes showed the lowest percentage content of extractives and an increased viscosity relative indicating that this time is highlighted with respect to time 60 minutes, because the material is possibly in the form of a crosslinked polymer. Given the choice of time of 30 minutes other polymerization reactions were performed with various anhydrides and other conditions employed different proportions by mass of polyol anhydrides we were referred to as condition I (20 g anhydride and 8 g of polyol), II (20 g anhydride and 20 g of polyol) and III (8 g anhydride and 20 g of polyol). The FTIR spectra of polymeric materials with different polymerization conditions used to prove the occurrence of chemical modification due to the appearance of a characteristic band ester groups (1750 cm-1) present in the polymerized material. He chose to work with the condition III, as is the condition which employs a larger amount of polyol, and even with the smaller amount of anhydride used FTIR spectra revealed that the polymerization reaction was performed. Among the various anhydrides (phthalic, maleic and pyromellitic) of the different conditions used that stood out before the solubility test with solvents analyzed was polymerized material with pyromellitic anhydride because the polymerized material likely in the form of a crosslinked polymer because it was insoluble or poorly soluble in the solvents tested. Polymerization of the polyol with pyromellitic anhydride using condition III, that is, BCPP30, CSPP30, PCPP30 e BCPPG30, provided an increase in thermal stability relative to material in the form of polyol. Applicability tests concerning the incorporation of 16% m / m BCPP30, CSPP30, PCPP30 e BCPPG30 additive in relation to the mass of 600 g CAP showed through characterization tests used, softening point, elastic recovery and marshall dosage, it is possible to use BCPP30 as an additive the conventional CAP, because even with the incorporation of this new additive modified CAP met the specifications of the appropriate standard.
Resumo:
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using 1H and 13C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
Cell-based therapy is one of the major potential therapeutic strategies for cardiovascular, neuronal and degenerative diseases in recent years. Synthetic biodegradable polymers have been utilized increasingly in pharmaceutical, medical and biomedical engineering. Control of the interaction of living cells and biomaterials surfaces is one of the major goals in the design and development of new polymeric biomaterials in tissue engineering. The aims of this study is to develop a novel bio-mimic polymeric materials which will facilitate the delivery cells, control cell bioactivities and enhance the focal integration of graft cells with host tissues.
Resumo:
Silicon substrates coated with a bromide-terminated silane are transformed into highly reactive, cyclopentadiene covered analogues. These surfaces undergo rapid cycloaddition reactions with various dienophile-capped polymers. Mild heating of the substrates causes the retro-Diels-Alder reaction to occur, thus reforming the reactive cyclopentadiene surface, generating an efficiently switchable surface.
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.
Resumo:
Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.
Resumo:
Uusien polymeeripohjaisten teknologioiden ja materiaalien myötä räätälöityjen polymeerien tarve on kasvanut. Viime vuosituhannen lopussa kehitetyt kontrolloidut polymerointimenetelmät ovat avanneet uusia mahdollisuuksia paitsi monimutkaisten polymeerien synteesiin, myös itsejärjestyvyyteen perustuvien funktionaalisten nanorakenteiden suunnitteluun ja valmistukseen. Nämä voivat jäljitellä luonnossa esiintyviä rakenteita, joita muodostavat esimerkiksi lipidit ja proteiinit. Itsejärjestyvät molekyylit ovat usein amfifiilisiä eli ne koostuvat hydrofiilisistä ja hydrofobisista osista ja polymeereissä nämä osat voivat olla omina lohkoinaan, jolloin puhutaan amfifiilisistä lohko- tai blokkikopolymeereistä. Riippuen järjestyneiden rakenteiden koostumuksesta ja muodosta, amfifiilisiä blokkikopolymeerejä on tutkittu tai jo käytetty nanoteknologiassa, elastomeereissä, voiteluaineissa, pinta-aktiivisina aineina, lääkkeenannostelussa, maaleissa, sekä elektroniikka-, kosmetiikka- ja elintarviketeollisuudessa. Tavallisimmin käytetyt amfifiiliset blokkikopolymeerit ovat olleet lineaarisia, mutta viime aikoina tutkimus on suuntautunut kohti monimutkaisempia rakenteita. Tällaisia ovat esimerkiksi tähtipolymeerit. Tähtimäisissä polymeereissä miselleille tyypillinen ydin-kuori-rakenne säilyy hyvin alhaisissakin polymeerikonsentraatioissa, koska polymeeriketjut ovat kiinni toisissaan yhdessä pisteessä. Siten ne ovat erityisen kiinnostavia tutkimuskohteita erilaisten hydrofobisten orgaanisten yhdisteiden sitomiseksi ja vapauttamiseksi. Tässä työssä on tarkasteltu amfifiilisten tähtipolymeerien itsejärjestymistä vesiliuoksissa sekä kokeellisesti ja tietokonesimulaatioin. Työ koostuu kahdesta osasta: tähtipolymeerien synteesistä makrosyklisillä initiaattoreilla ja amfifiilisten tähtimäisten blokkikopolymeerien ominaisuuksien tutkimisesta.
Resumo:
Kontrolloidut radikaalipolymerointimenetelmät, kuten RAFT-polymerointi, ovat moderni tapa valmistaa polymeerejä säädellysti. RAFT-polymeroinnilla polymeerien ketjunpituutta, moolimassajakaumaa, mikrorakennetta (taktisuus, järjestys), koostumusta ja funktionaalisuutta kyetään hallitsemaan. Siten menetelmällä voidaan valmistaa uudenlaisia polymeeriarkkitektuureja, kuten blokki- ja tähtipolymeerejä, sekä hybridimateriaaleja ja biokonjugaatteja. Polymeeristen rakennuspalikoiden itsejärjestyminen, missä huolellisesti syntetisoidut polymeerit järjestyvät halutulla tavalla nanoskaalassa, on suosittu tutkimuskohde materiaalitieteessä. On huomattava, että blokkipolymeerien itsejärjestyminen on vielä suhteellisen nuori tutkimusaihe. Tämän hetkiset polymeeriset nanomateriaalit ovat suhteellisen yksinkertaisia luonnon luomuksiin verrattuina, tarjoten jatkuvasti uusia mahdollisuuksia seuraavan sukupolven polymeereille. Tässä työssä RAFT-polymeroinnilla syntetisoitiin amfifiilisiä di- ja triblokkikopolymeerejä sekä tutkittiin niiden järjestymistä nanorakenteiksi. Kaikissa blokkikopolymeereissä käytettiin lämpöherkkää poly(N-isopropyyliakryyliamidia). Siten polymeerit ja tutkitut materiaalit reagoivat lämpötilanmuutokseen ympäristössä eli ovat ns. ympäristöherkkiä. Työssä tutkittiin taktisuuden kontrollointia N-isopropyyliakryyliamidin RAFT-polymeroinnissa. Polymeerin taktisuutta sekä ketjunpituutta ja blokkijärjestystä säätämällä voitiin hallita polymeerin itsejärjestymistä vesiliuoksessa. Amfifiiliset polymeerit järjestyivät laimeissa vesiliuoksissa erilaisiksi misellirakenteiksi, muodostaen ns. mikrosäiliöitä. Tällaisilla polymeereillä odotetaan olevan sovelluksia esim. lääkeainevapautuksessa. Amfifiilejä käytetään myös esimerkiksi apuaineina pinnoitteissa ja kosmetiikassa. Kiinteässä tilassa tutkitut triblokkikopolymeerit muodostivat teoreettisesti ennustettuja morfologioita. Lämpöherkän materiaalin hydrogeelit toimivat suodatinmembraanina nanokokoluokassa. RAFT-polymeroinnilla syntetisoituja polymeereja voidaan sellaisenaan käyttää kultananopartikkeleiden päällystämiseen. Kultananopartikkelit ovat erittäin kiinostavia mm. niiden stabiilisuuden ja ainutlaatuisten pintaominaisuuksien vuoksi. Kun amfifiilisiä polymeerejä kiinnitettiin kultapartikkelin pinnalle, sen liuos- ja optisia ominaisuuksia voitiin säädellä pH:n ja lämpötilan avulla. Tällaisilla kultananopartikkeleilla on sovelluksia mm. diagnostiikassa, sensoreina ja solukuvauksessa.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.
Resumo:
The synthesis of ``smart structured'' conducting polymers and the fabrication of devices using them are important areas of research. However, conducting polymeric materials that are used in devices are susceptible to degradation due to oxygen and moisture. Thus, protection of such devices to ensure long-term stability is always desirable. Polymer nanocomposites are promising materials for the encapsulation of such devices. Therefore, it is important to develop suitable polymer nanocomposites as encapsulation materials to protect such devices. This work presents a technique based on grafting between surface-decorated gamma-alumina nanoparticles and polymer to make nanocomposites that can be used for the encapsulation of devices. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride-terminated polydimethylsiloxane) through a platinum-catalyzed hydrosilylation reaction. Fourier transform infrared spectroscopy, X-ray-photoelectron spectroscopy, and Raman spectroscopy were used to characterize the surface chemistry of the nanoparticles after surface modification. The grafting density of alkene groups on the surface of the modified nanoparticles was calculated using CHN and thermogravimetric analyses. The thermal stability of the composites was also evaluated using thermogravimetric analysis. The nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using a density gradient column, and the morphology of the composites was evaluated by scanning electron microscopy. All of our studies reveal that the composites have good thermal stability and mechanical flexibility and, thus, can potentially be used for the encapsulation of organic photovoltaic devices.