900 resultados para 670308 Printing and publishing processes
Resumo:
I. Introductory Remarks
A brief discussion of the overall organization of the thesis is presented along with a discussion of the relationship between this thesis and previous work on the spectroscopic properties of benzene.
II. Radiationless Transitions and Line broadening
Radiationless rates have been calculated for the 3B1u→1A1g transitions of benzene and perdeuterobenzene as well as for the 1B2u→1A1g transition of benzene. The rates were calculated using a model that considers the radiationless transition as a tunneling process between two multi-demensional potential surfaces and assuming both harmonic and anharmonic vibrational potentials. Whenever possible experimental parameters were used in the calculation. To this end we have obtained experimental values for the anharmonicities of the carbon-carbon and carbon-hydrogen vibrations and the size of the lowest triplet state of benzene. The use of the breakdown of the Born-Oppenheimer approximation in describing radiationless transitions is critically examined and it is concluded that Herzberg-Teller vibronic coupling is 100 times more efficient at inducing radiationless transitions.
The results of the radiationless transition rate calculation are used to calculate line broadening in several of the excited electronic states of benzene. The calculated line broadening in all cases is in qualitative agreement with experimental line widths.
III. 3B1u←1A1g Absorption Spectra
The 3B1u←1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained at high resolution using the phosphorescence photoexcitation method. The spectrum exhibits very clear evidence of a pseudo-Jahn-Teller distortion of the normally hexagonal benzene molecule upon excitation to the triplet state. Factor group splitting of the 0 – 0 and 0 – 0 + v exciton bands have also been observed. The position of the mean of the 0 – 0 exciton band of C6H6 when compared to the phosphorescence origin of a C6H6 guest in a C6D6 host crystal indicates that the “static” intermolecular interactions between guest and hose are different for C6H6 and C6D6. Further investigation of this difference using the currently accepted theory of isotopic mixed crystals indicates that there is a 2cm-1 shift of the ideal mixed crystal level per hot deuterium atom. This shift is observed for both the singlet and triplet states of benzene.
IV. 3E1u←1A1g, Absorption Spectra
The 3E1u←1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained using the phosphorescence photoexcitation technique. In both cases the spectrum is broad and structureless as would be expected from the line broadening calculations.
Resumo:
This review is concerned with the kinetics of calcium carbonate formation and related processes which are important in many hard waters.
Resumo:
This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.
Resumo:
The effects of gravity and crystal orientation on the dissolution of GaSb into InSb melt and the recrystallization of InGaSb were investigated under microgravity condition using a Chinese recoverable satellite and under normal gravity condition on earth. To investigate the effect of gravity on the solid/liquid interface and compositional profiles. a numerical simulation was carried out. The InSb crystal melted at 525 degrees C and then a part of GaSb dissolved into the InSb melt during heating to 706 degrees C and this process led to the formation of InGaSb solution. InGaSb solidified during the cooling process. The experimental and calculation results clearly show that the shape of the solid/liquid interface and compositional profiles in the solution were significantly affected by gravity. Under microgravity, as the Ga compositional profiles were uniform in the radial direction. the interfaces were almost parallel. On the contrary, for normal gravity condition, as large amounts of Ga moved up in the upper region due to buoyancy, the dissolved zone broadened towards gravitational direction. Also. during the cooling process, needle crystals of InGaSb started appearing and the value of x of InxGa1-xSb crystals increased with the decrease of temperature. The GaSb with the (111)B plane dissolved into the InSb melt much more than that of the (111)A plane. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
IEECAS SKLLQG