1000 resultados para 660403 Transport
Resumo:
An analytical solution for steady-state oxygen transport in soils including 2 sink terms, viz roots and microbes with the corresponding vertical distribution scaling lengths forming a ratio p, showed p governed the critical air-filled porosity, θc, needed by most plants. For low temperature and p, θc was <0.1 but at higher temperatures and p = 1, θc was >0.15 m3/m3. When root length density at the surface was 104 m/m3 and p > 3, θc was 0.25 m3/m3, more than half the pore space. Few combinations of soil and climate regularly meet this condition. However, for sandy soils and seasonally warm, arid regions, the theory is consistent with observation, in that plants may have some deep roots. Critical θc values are used to formulate theoretical solutions in a forward mode, so different levels of oxygen uptake by roots may be compared to microbial activity. The proportion of respiration by plant roots increases rapidly with p up to p ≈2.
Resumo:
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.
Resumo:
A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity space, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
Sustainability concerns every citizen. Housing affordability and sustainable solutions are being highlighted in research and practice in many parts of the world. This paper discusses the development of a Commuter Energy and Building Utilities System (CEBUS) in sustainable housing projects as a means of bridging the gap between current median house pricing and target affordable house pricing for low income earners. Similar scales of sustainable housing development cannot be achieved through independent application of current best practice methods in ecologically sustainable development strategies or transit oriented development master plans. This paper presents the initial stage of research on first capital and ongoing utilities and transport cost savings available from these sustainable design methods. It also outlines further research and development of a CEBUS Dynamic Simulation Model and Conceptual Framework for the Australian property development and construction industry.
Resumo:
Real-time networked control systems (NCSs) over data networks are being increasingly implemented on a massive scale in industrial applications. Along with this trend, wireless network technologies have been promoted for modern wireless NCSs (WNCSs). However, popular wireless network standards such as IEEE 802.11/15/16 are not designed for real-time communications. Key issues in real-time applications include limited transmission reliability and poor transmission delay performance. Considering the unique features of real-time control systems, this paper develops a conditional retransmission enabled transport protocol (CRETP) to improve the delay performance of the transmission control protocol (TCP) and also the reliability performance of the user datagram protocol (UDP) and its variants. Key features of the CRETP include a connectionless mechanism with acknowledgement (ACK), conditional retransmission and detection of ineffective data packets on the receiver side.
Resumo:
Sustainable transport has become a necessity instead of an option, to address the problems of congestion and urban sprawl, whose effects include increased trip lengths and travel time. A more sustainable form of development, known as Transit Oriented Development (TOD) is presumed to offer sustainable travel choices with reduced need to travel to access daily destinations, by providing a mixture of land uses together with good quality of public transport service, infrastructure for walking and cycling. However, performance assessment of these developments with respect to travel characteristics of their inhabitants is required. This research proposes a five step methodology for evaluating the transport impacts of TODs. The steps for TOD evaluation include pre–TOD assessment, traffic and travel data collection, determination of traffic impacts, determination of travel impacts, and drawing outcomes. Typically, TODs are comprised of various land uses; hence have various types of users. Assessment of characteristics of all user groups is essential for obtaining an accurate picture of transport impacts. A case study TOD, Kelvin Grove Urban Village (KGUV), located 2km of north west of the Brisbane central business district in Australia was selected for implementing the proposed methodology and to evaluate the transport impacts of a TOD from an Australian perspective. The outcomes of this analysis indicated that KGUV generated 27 to 48 percent less traffic compared to standard published rates specified for homogeneous uses. Further, all user groups of KGUV used more sustainable modes of transport compared to regional and similarly located suburban users, with higher trip length for shopping and education trips. Although the results from this case study development support the transport claims of reduced traffic generation and sustainable travel choices by way of TODs, further investigation is required, considering different styles, scales and locations of TODs. The proposed methodology may be further refined by using results from new TODs and a framework for TOD evaluation may be developed.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
The need to find an alternative to our current transport situation is widely accepted. In most cities of the world, traffic congestion is commonplace and air pollution is normal. Road fatalities are a regular and almost accepted event. And (in most developed nations) as an indirect consequence of our transport choices, obesity is increasing at an alarming rate. The car is undeniably a major contributor to this situation. Additionally the very structure of our cities has evolved to the point that it can be creditably claimed that the city belongs to the car and not to humans. There are however alternatives. There is a plethora of experimental vehicles in all shapes and configurations. And yet, the car is still king. The question is, how do we pick a winner? What are the aspects of the car that make it so appealing? Are these aspects able to be translated into a more sustainable version? What do we need to incorporate in our designs of new vehicles to make them more appealing to the consumers? In this paper I explore these questions and propose a list of design criteria for more sustainable transport options.
Resumo:
Transport and logistics are essential to effective business. Very little is currently known about the impact of improved transport on micro-enterprises in developing economies and whether improvements in this area would assist the very poor. This paper looks at the obstacles of an inefficient transport facilitation system and the high costs incurred by 22 survival micro-entrepreneurs funded by the same local NGO and operating in diverse industry sectors in a peri-urban context in Mozambique. Six case studies are selected to illustrate the most common constraints they face. The perspectives of the micro-business owners are confronted with those of government officials and community leaders for two reasons: to identify any mismatch and to discuss possible solutions. Significant discrepancies are detected between government agenda and needs of the population, while community-based entrepreneurship (CBE) is discussed as a possible collective strategy in dealing with the problem.