958 resultados para 5,5-DIMETHYL-1-PYRROLINE N-OXIDE
Resumo:
A new process for the preparation of 3,5-dihydroxy-1-pentylbenzene, which is used as medicinal intermediate and raw material for the synthesis of HIV restrainer, is proposed in this paper. Technical 3,5-dimethoxybenzoic acid reacted with lithium hydride to form a salt (I) which acylated n-butyllithium directly to give 1-(3,5-dimethoxyphenyl)-1-pentanone (II) in 85.06% yield. Then (II) was reduced through a Wolff-K-Huangminglong reaction at 210 degrees C to give 3,5-dimethoxy-1-pentylbenzene (III). Finally, (III) refluxed with melt pyridine hydrochloride at 200 degrees C for 2 h to afford the target product 3,5-dihydroxy-1-pentylbenzene (IV). The total yield of (IV) amounted to 61.50% and its mass percentage was 98.22%. The products were characterized by means of IR, H-1-NMR, GC and HLPC-MS. The results indicated that this synthetic route was feasible, characterized by simple process and higher yield, and superior to the published ones.
Resumo:
In the title complex, [Cd(C2H3O2)(2)(C17H10N4O)(2)], the central Cd-II ion (site symmetry 2) shows an uncommon eight-coordinate CdN4O4 coordination geometry arising from two N,N-chelating 2-(2-furyl)-1H-imidazo[4,5-f]-1,10-phenanthro-line molecules and two O, O-bidentate acetate anions.
Resumo:
In the title compound, [Zn(C8H4O4)(C17H10N4O)](n), the Zn-II atom is five-coordinated by two N atoms from the phenanthro-line-derived ligand and three O atoms from one bidentate and one monodentate benzene-1,2-dicarboxylate (1,2-BDC) dianions in a distorted trigonal-bipyramidal geometry. The Zn-II atoms are bridged by the 1,2-BDC ligands to form a single-chain structure. Neighboring chains interact through pi-pi interactions, leading to a two-dimensional network.
Resumo:
Racemic cis-BCH-189 can be resolved to (-)-enantiomer (lamivudine) and (+)-enantiomer by esterification of cis-2-hydroxymethyl-5-(N-4(')-acetylcytosine-1'-yl)-1,3-oxathiolane and (+)-menthyl chloroformate in CH3CN with pyridine as base. The two diastereomers of ester were seperated by recrystallization in methanol at 0degreesC. Lamivudine was obtained by deprotection of (-)-diastereomer with high yield.
Resumo:
The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.
Resumo:
Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.
Resumo:
The target compound BCH-189 was synthesized with high yield via four steps from benzoyloxy acetylaldehyde and p-dithiane-2,5-diol as starting materials. The synthetic route is preferable to what literature reported.
Resumo:
A poly(o-toluidine) (POT)/2,5-dimercapto-1,3,4-thiadiazole (DMcT) composite was prepared. When POT and DMcT are mixed in a proper solvent, POT in a medium-oxidation state is reduced, and DMcT in turn is oxidized to its soluble dimer when the molar ratio of DMcT to POT is higher than 0.5. Therefore, the composite was soluble in organic solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP) and exhibited very high electroactivity, two orders of magnitude higher than that of pure POT and three orders of magnitude higher than that of pure DMcT. Molecular-level contact between POT and DMcT is the reason for the improved catalytic effect of POT on DMcT, compared to that of polyaniline on DMcT. (C) 1999 The Electrochemical Society. S0013-4651(98)08-059-8. All rights reserved.
Resumo:
The title molecule, [TiCl2(C5H5)(C18H21O)], has a pseudotetrahedral bent metallocene structure in which the cyclopentadienyl ring is symmetrically bonded to Ti [range of Ti-C distances 2.36(1)-2.41(1)Angstrom], but the substituted cyclopentadienyl ring adopts asymmetrical bonding [Ti-C 2.33(1)-2.48(1)Angstrom] due to the interaction of the large substituent with the Cl(2) atom. The angle C(11)-C(1)-C(21) is 111.1(8)degrees with the large substituent occupying a cis position with respect to the substituted ring.
Resumo:
本文研究了TritonX-100在浊点条件下对钴-4-(5-氯-2-吡啶偶氮)-1,3-二氨基苯(5-Cl-PADAB)络合物的析相条件,在pH4.0~6.0介质中,将胶束溶液加热到92±1℃,保持40min,络合物即被TritonX-100相富集。富集液在575nm测定吸光度,钴含量在0~4μg/5ml范围内服从比尔定律,干扰离子可在TritonX-100析相液中加入H_2SO_4消除。拟定的方法灵敏、简捷,已用于不经分离直接测定人发及自来水中痕量钴。
Resumo:
These simulation calculations for the oxygen-atom vacancy in the high temperature superconductor TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) have been performed by means of the tight-binding approximation based on the EHMO method. The results indicate that the effect of the oxygen-atom vacancy on the charge distributions at the Tl-, Ba-, Cu- and O-atom sites is appreciably different and that there may exist two kinds of Cu cation with different net charges (approximately + 3.0 or approximately + 1.0) due to the oxygen-atom vacancy in the lattice. The electric field gradient at the site of the oxygen-atom vacancy has been calculated. The position of the oxygen-atom vacancy which favours the high temperature superconductivity of TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) has been discussed.
Resumo:
Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The crystal structure of the title compound, C19H15FN6OS, is stabilized by a weak intermolecular C-(HN)-N-... hydrogen-bond interaction.
Resumo:
In the title compound, C12H10FN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 71.94 (3) and 40.10 (2)degrees, respectively. Inter- and intramolecular hydrogen-bond and pi-pi stacking interactions stabilize the structure.