920 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
BACKGROUND: Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. METHODS: This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. RESULTS: The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. CONCLUSION: In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.
Resumo:
'Aurora-1' peaches establishes an interesting alternative as a minimally processed product, due to its characteristics like flavor, color, smell, and also because of its handling resistance. However, it has a short shelf life after a fresh-cut due to enzymatic browning and stone cavity collapse. The main purpose of this research was to test the additive with antioxidant effect to prevent browning in minimally processed 'Aurora-1' peaches. The minimal processing consists of washing, sanitizing, peelings and fruit stone extraction. After that, longitudinal cuts were made to obtain eight segments per fruit. The slices were immersed into the following treatment solutions: control (immersion in 2% ascorbic acid); 2% ascorbic acid + 2% calcium chloride; 1% sodium isoascorbate; 1% citric acid; 1% L-cysteine hydrochloride. The products were placed into rigid polystyrene trays branded MEIWA M-54, covered with 14 µm PVC film (OmnifilmTM) and kept in cold storage at 3ºC ± 2ºC and 65% RH for twelve days, and evaluated each three days. Appraised variables were appearance, soluble solids, titratable acidity, soluble carbohydrates and reducing sugars, total and soluble pectin, ascorbic acid, and peroxidase and polyphenol oxidase enzyme activity. L-cysteine gave to the minimally processed products a shelf life of twelve days, limmited by off-flavor. The treatment with ascorbic acid was efficient to maintainthe ascorbic acid content, with a shelf-life of nine days, limited by enzymatic browning.
Resumo:
Brain damage caused by an acute injury depends on the initial severity of the injury and the time elapsed after the injury. To determine whether these two variables activate common mechanisms, we compared the response of the rat medial septum to insult with a graded series of concentrations of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) with the time-course effects of a low dose of AMPA. For this purpose we conducted a dose-response study at concentrations of AMPA between 0.27 and 10.8 nmol to measure atrophy of the septal area, losses of cholinergic and GABAergic neurons, astroglial and microglial reactions, and calcification. Cholinergic neurons, whose loss paralleled the degree of septal atrophy produced by AMPA, are more sensitive than GABAergic neurons to the injury produced by AMPA. At doses of AMPA above 2.7 nmol, calcification and the degree of microglial reaction increased only in the GABAergic region of the septal area, whereas atrophy and neuronal loss reached a plateau. We chose the 2.7-nmol dose of AMPA to determine how these parameters were modified between 4 days and 6 months after injection. We found that atrophy and neuronal loss increased progressively through the 6-month study period, whereas astrogliosis ceased to be observed after 1 month, and calcium precipitates were never detected. We conclude that septal damage does not increase with the intensity of an excitotoxic insult. Rather, it progresses continuously after the insult. Because these two situations involve different mechanisms, short-term paradigms are inappropriate for interpreting the pathogenic mechanisms responsible for long-term neurodegenerative processes.
Resumo:
The main objective of this research was the characterization of the humic fractions isolated from vermicomposting, originating from cattle manure and treated with Eisenea foetida or Lumbricus rubellus, during 3 and 6 months. Elemental analysis and Infrared and UV-vis spectroscopy were used for their characterizations. The results obtained shown that both humic acids are very similar, but six-month humic acid shown lower percentage of organic material than three month humic acid. The spectroscopy analysis shown that the humic acid studied can be compared with other humic acids reported in the literature. By comparing both vermicomposts, the one produced in three months presents a great potential as fertilizer and it is more economical than the vermicompost produced during a six month period.
Resumo:
5-Aminolevulinic acid (ALA) is a heme precursor accumulated in acute intermittent porphyria (AIP), which might be associated with hepatocellular carcinoma (HCC) in symptomatic patients. Under metal catalyzed oxidation, ALA and its cyclic dimerization product, 3,6-dihydropyrazine-2,5-dipropanoic acid, produce reactive oxygen species that damage plasmid and calf thymus DNA bases, increase the steady state level of 8-oxo-7,8-dihydro-2´-deoxyguanosine in liver DNA and promote mitochondrial DNA damage. The final product of ALA, 4,5-dioxovaleric acid (DOVA), is able to alkylate guanine moieties, producing adducts. ALA and DOVA are mutagenic in bacteria. This review shows an up-to-date literature data that reinforce the hypothesis that the DNA damage induced by ALA may be associated with the development of HCC in AIP patients.
Resumo:
Several compounds related to helminthosporic acid (3) were synthesized via the [3+4] cycloaddition. The reaction of 3-hydroxymethyl-2-methylfuran (12) with 1,1,3,3-tetrabromo-4-methylpentan-2-one (13) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (8) (37%) and 7-hydroxymethyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (14) (12%), which were converted into 7-formyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (16) (32% from 8) and 7-formyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (18) (40% from 14), respectively. Reduction of (8) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6 -en-3alpha-ol (11) (63% from 8) and 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3 beta-ol (15) (30% from 8). The 4alpha-isopropyl-1alpha-methyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-7-oic acid (19) was obtained by oxidation of (16) (78%). The results of biological tests are described in details. The best result was observed for compound (15) that caused 76% inhibition on the root growth of D. tortuosum.
Resumo:
alpha-Aminoketones are expected to undergo enolization and subsequent aerobic oxidation yielding oxyradicals and highly toxic a-oxoaldehydes. Our interest has been focused on two endogenous a-aminoketones: 5-aminolevulinic acid (ALA) and aminoacetone (AA), accumulated in porphyrias and diabetes mellitus, respectively, and recently implicated as contributing sources of oxyradicals in these diseases. The final oxidation product of ALA, 4,5-dioxovaleric acid (DOVA), is able to alkylate DNA guanine moieties and expected to promote protein cross-linking. Methylglyoxal (MG), the final oxidation product of AA, is also highly cytotoxic and able to aggregate protein molecules. This review covers chemical and biochemical aspects of these alpha-aminoketones and their putative roles in the oxidative stress associated with porphyric disorders and diabetes.
Resumo:
This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.
Resumo:
The chlorination of activated aromatic rings is efficiently achieved under mild conditions by reaction of aromatic compounds with trichloroisocyanuric acid in acetonitrile, at room temperature, leading to products in 60-95% isolated yields and good regioselectivity.
Resumo:
From the trunk bark of Nectandra megapotamica (Lauraceae) four phenylpropanoids, elemicin, isoelemicin, (±)-erythro-1-(3,4,5-trimethoxyphenyl)-1,2-propanediol and (±)-threo-1-(3,4,5-trimetoxyphenyl)-1,2-propanediol have been isolated, in addition to 3,4,5-trimethoxybenzoic acid, (-)-epicatechin and trans-1(10)-epoxy-4(15)-caryophyllene. The diastereoisomeric erythro- and threo- phenylpropanoids are being reported for the first time in a plant taxon as well as the occurrence of the other compounds in Nectandra. The structures of the isolated compounds have been established on the basis of 1D and 2D NMR spectroscopic techniques. Their in vitro antifungal activities against standard strains of Candida albicans, C. krusei, C. tropicalis and Cryptococcus neoformans and antioxidant properties were also evaluated in this work.
Resumo:
A multivariate spectrophotometric method was developed for analysis of kojic acid/hydroquinone associations in skin whitening cosmetics. The method is based on the reaction between kojic acid and Fe3+ and on the reduction of Fe3+ by hydroquinone and further complexation of Fe2+ with 1,10-phenanthroline. The multivariate model was developed by Partial Least Squares Regression (PLSR), using 25 synthetic mixtures and mean-centered spectral data (350-380 nm). The use of 3 (kojic acid) and 2 (hydroquinone) latent variables permits the observation of mean errors of about 5% in the external validation phase.
Resumo:
Phytochemical investigation of the hexane extract from the stem of Xylopia laevigata led to the isolation of the ent-kaurane diterpenoids, ent-kaur-16-en-19-oic acid, 4-epi-kaurenic acid, ent-16β-hydroxy-17-acetoxy-kauran-19-al, ent-3β-hydroxy-kaur-16-en-19-oic acid, and ent-16β,17-dihydroxy-kauran-19-oic acid, as well as spathulenol and a mixture of β-sitosterol, stigmasterol and campesterol. The identification of the compounds was performed on the basis of spectrometric methods including GC-MS, IR, and 1D and 2D NMR. Potent larvicidal activity against Aedes aegypti larvae with LC50 of 62.7 µg mL-1 was found for ent-3β-hydroxy-kaur-16-en-19-oic acid. This compound also showed significant antifungal activity against Candida glabrata and Candida dubliniensis with MIC values of 62.5 µg mL-1.
Resumo:
Lipase from Thermomyces lanuginosus was covalently immobilized on activated poly-hydroxybutyrate, sugarcane bagasse and the chemically modified hybrid hydrogel chitosan-alginate prepared by different strategies. Among the tested supports, chitosan-alginate chemically modified with 2,4,6-trinitrobenzenesulfonic acid rendered derivatives with the highest hydrolytic activity and thermal-stability, 45-fold more stable than soluble lipase and was then selected for further studies. The pH of maximum activity was similar for both immobilized and free lipase (pH 8.0) while optimum temperature was 5 - 10 ºC higher for the immobilized lipase. Higher yields in the butyl butyrate synthesis were found for the derivatives prepared by activation with glycidol and epichlorohydrin.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
A new flavonoid, catechin-3-O-(3"-O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3"-O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC50 = 36.80 µM and IC50 = 25.37 µM, respectively.