999 resultados para 291302 Physical Metallurgy
Resumo:
A volume-averaged two-phase model addressing the main transport phenomena associated with hot tearing in an isotropic mushy zone during solidification of metallic alloys has recently been presented elsewhere along with a new hot tearing criterion addressing both inadequate melt feeding and excessive deformation at relatively high solid fractions. The viscoplastic deformation in the mushy zone is addressed by a model in which the coherent mush is considered as a porous medium saturated with liquid. The thermal straining of the mush is accounted for by a recently developed model taking into account that there is no thermal strain in the mushy zone at low solid fractions because the dendrites then are free to move in the liquid, and that the thermal strain in the mushy zone tends toward the thermal strain in the fully solidified material when the solid fraction tends toward one. In the present work, the authors determined how variations in the parameters of the constitutive equation for thermal strain influence the hot tearing susceptibility calculated by the criterion. It turns out that varying the parameters in this equation has a significant effect on both liquid pressure drop and viscoplastic strain, which are key parameters in the hot tearing criterion. However, changing the parameters in this constitutive equation will result in changes in the viscoplastic strain and the liquid pressure drop that have opposite effects on the hot tearing susceptibility. The net effect on the hot tearing susceptibility is thus small.
Resumo:
Alloys of Al-3.8Cu-1Mg-0.7Si, Al-4Cu-0.6Si-0.1Mg, Al-4Cu-1.2Mg and Al-1.9Mg-1.9Si were made using air atomised powder and conventional press-and-sinter powder metallurgy techniques. These were sintered under nitrogen with a controlled water content which varied from 3 to 630 ppm (a dew point of -69 to -25 degrees C), nitrogen-5%hydrogen, argon and argon-5% hydrogen, all at atmospheric pressure, or a vacuum of
Resumo:
Grain size is one of the most important microstructural characteristics determining the mechanical properties and therefore the service performance of polycrystalline materials. Heterogeneous nucleation involves the addition or in situ formation of potent nuclei in the system to promote nucleation events, leading to a fine grain structure. This paper reports experimental results using graphite and SiC as potential grain refining agents to form in situ nuclei for Mg in Mg-Al alloys, and demonstrates the key role of Al4C3 in grain refilling this important alloy system. This insight will contribute to the design and development of the most cost effective, eco-friendly grain refining agents for Mg-Al alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of geometric factors on the galvanic current density distribution for AZ91D coupled to steel was investigated using experimental measurements and a BEM model. The geometric factors were area ratio of anode/cathode, insulation distance between anode and cathode, depth of solution film covering the galvanic couple and the manner of interaction caused by two independent interacting galvanic couples. The galvanic current density distribution calculated from the BEM model was in good agreement with the experimental measurements. The galvanic current density distribution caused by the interaction of two independent galvanic couples can be reasonably predicted as the linear addition of the galvanic current density caused by each individual galvanic couple. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The addition of SiC particles effectively grain refined a range of Mg-Al alloys. The greatest reductions in grain size were found for the alloys with lower Al contents. The presence of Mg2Si in the microstructure after that SiC addition, and consideration of phase equilibria suggested that the SiC transforms to Al4C3, and this is the actual nucleant. The addition of Mn poisoned the grain refining effect of the SiC addition, probably due to the formation of less potent Al-Mn-carbides. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The published requirements for accurate measurement of heat transfer at the interface between two bodies have been reviewed. A strategy for reliable measurement has been established, based on the depth of the temperature sensors in the medium, on the inverse method parameters and on the time response of the sensors. Sources of both deterministic and stochastic errors have been investigated and a method to evaluate them has been proposed, with the help of a normalisation technique. The key normalisation variables are the duration of the heat input and the maximum heat flux density. An example of application of this technique in the field of high pressure die casting is demonstrated. The normalisation study, coupled with previous determination of the heat input duration, makes it possible to determine the optimum location for the sensors, along with an acceptable sampling rate and the thermocouples critical response-time (as well as eventual filter characteristics). Results from the gauge are used to assess the suitability of the initial design choices. In particular the unavoidable response time of the thermocouples is estimated by comparison with the normalised simulation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
While the general mechanisms of hot tearing are understood, i.e. the inability of liquid to feed imposed strain on the mushy material, work continues on improving the understanding of the mechanisms at play. A hot tear test rig that measures the temperature and load imposed on the mushy zone during solidification has been successfully used to study hot tearing. The mould has now been modified to incorporate a window above the hot spot region to allow observation of hot tear formation and growth. Combining information from visual observation with load and temperature data has led to a better understanding of the mechanism of hot tearing. Tests were carried out on an Al-0.5 wt-% Cu alloy. It was found that load development began at about 90% solid and a hot tear formed a short time later, at between 93% and 96% solid. Hot tearing started at a very low load.
Resumo:
This paper investigates the relationship between mechanical properties and microstructure in high pressure die cast binary Mg-Al alloys. As-cast test bars produced using high pressure die casting have been tested in tension in order to determine the properties for castings produced using this technique. It has been shown that increasing aluminium levels results in increases in yield strength and a decrease in ductility for these alloys. Higher aluminium levels also result in a decrease in creep rate at 150 degrees C. It has also been shown that an increase in aluminium levels results in an increase in the volume fraction of eutectic Mg17Al12 in the microstructure.
Resumo:
A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The orientation relationship (OR) between the beta(Zn) phase and the alpha(Al) phase and the corresponding habit planes in a Zn-Al eutectoid alloy were accurately determined using convergent beam Kikuchi line diffraction patterns. In addition to the previously reported OR. [11 (2) over bar0](beta)parallel to[110](alpha), (0002)(beta)parallel to ((1) over bar 11)alpha, two new ORs were observed. They are: [11 (2) over bar0](beta)parallel to [110], ((1) over bar 101)(beta) 0.82 degrees from (002)(alpha) and [(1) over bar 100](beta)parallel to[112](alpha), (0002)(beta) 4.5 degrees from (111)(alpha). These ORs can be explained and understood using the recently developed edge-to-edge matching model. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sand-cast plates were used to determine the effect of iron and manganese concentrations on porosity levels in Al-9 pet Si-0.5 pet Mg alloys. Iron increased porosity levels. Manganese additions increased porosity levels in alloys with 0.1 pet Fe, but reduced porosity in alloys with 0.6 and I pet Fe. Thermal analysis and quenching were undertaken to determine the effect of iron and manganese on the solidification of the Al-Si eutectic. At high iron levels, the presence of large beta-Al5FeSi was found to reduce the number of eutectic nucleation events and increase the eutectic grain size. The preferential formation of alpha-Al15Mn3Si2 upon addition of manganese reversed these effects. It is proposed that this interaction is due to beta-Al5FeSi and the Al-Si eutectic having common nuclei. Porosity levels are proposed to be controlled by the eutectic grain size and the size of the iron-bearing intermetallic particles rather than the specific intermetallic phase that forms.
Resumo:
The basis of the present authors' edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the edges of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed edge-to-edge matching appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal Structures and in those where the precipitate has a more complex structure.
Resumo:
The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.