997 resultados para 260104 Sedimentology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (ca. 50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color-encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kfn. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from ca. 700 dB/m at 400 kHz and a power of n = 1-2 in coarse-grained sands to few decibels per meter and n ? 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution records of opal, carbonate, and terrigenous fluxes have been obtained from a high-sedimentation rate core (MD84-527: 43°50'S; 51°19'E; 3269 m) by normalization to 230Th. This method estimates paleofluxes to the seafloor on a point-by-point basis and distinguishes changes in sediment accumulation due to variations in vertical rain rates from those due to changes in syndepositional sediment redistribution by bottom currents. We also measured sediment delta15N to evaluate the changes in nitrate utilization in the overlying surface waters associated with paleoflux variations. Our results show that opal accumulation rates on the seafloor during the Holocene and stage 3, based on 14C dating, were respectively tenfold and fivefold higher than the vertical rain rates, At this particular location, changes in opal accumulation on the seafloor appear to be mainly controlled by sediment redistribution by bottom currents rather than variations in opal fluxes from the overlying water column. Correction for syndepositional sediment redistribution and the improved time resolution that can be achieved by normalization to 230Th disclose important variations in opal rain rates. We found relatively high but variable opal paleoflux during stage 3, with two maxima centered at 36 and 30 kyr B.P., low opal paleoflux during stage 2 and deglaciation and a pronounced maximum during the early Holocene, We interpret this record as reflecting variations in opal production rates associated with climate-induced latitudinal migration of the southern ocean frontal system. Sediments deposited during periods of high opal paleoflux also have high authigenic U concentrations, suggesting more reducing conditions in the sediment, and high Pa-231/Th-230 ratios, suggesting increased scavenging from the water column. Sediment delta15N is circa 1.5 per mil higher during isotopic stage 2 and deglaciation. The low opal rain rates recorded during that period appear to have been associated with increased nitrate depletion. This suggests that opal paleofluxes do not simply reflect latitudinal migration of the frontal system but also changes in the structure of the upper water column. Increased stratification during isotopic stage 2 and deglaciation could have been produced by a meltwater lid, leading to lower nitrate supply rates to surface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate late Quaternary paleoclimatic and paleoceanographic change in the sedimentary record, preserved on the Australian Continental Margin during the late Quaternary, core material was collected from Ocean Drilling Program, Leg 133, Site 819. An expanded sequence of late Quaternary, rhythmically bedded, predominantly hemipelagic sediments were recovered from Hole 819A. The foraminiferal d18O record preserved at Hole 819A suggests that the late Quaternary section is incomplete. Both benthic and planktonic d18O stratigraphies can be traced tentatively downcore to stage 6 at about 32.5 mbsf, where a major hiatus occurs. At this level, a slump detachment surface has been identified (Shipboard Scientific Party, 1991). This slump has removed marine oxygen isotope stages 7 to 13. Below 32.5 mbsf, continuous correlation can be achieved in the planktonic d18O curve, with existing deep-sea foraminiferal oxygen isotope stratigraphies from stage 14 through stage 28. The major hiatus at 32.5 mbsf marks the position of a significant change in the character of the sedimentation at Site 819. Sediments below 32.5 mbsf, relative to those above 32.5 mbsf, are characterized by less variation in mean particle size; lower percentages of carbonate content in the coarse fraction (>63 µm); a stronger relationship between the percentage of fine fraction and magnetic mineral concentration, and lower foraminiferal abundances. Above the hiatus, large fluctuations in mean particle size occurred, which have been interpreted to be the result of high foraminiferal abundances. Early highstands show high terrigenous influx in the fine fraction above the hiatus. This is the opposite of the general idea of high terrigenous influx during lowstands of sea level on siliciclastic dominated continental margins. We are far from understanding the origin of this material and further investigation will be required (see also Glenn et al., this volume). All our records, except the planktonic foraminiferal oxygen isotope record, indicate that the major hiatus marks the position of a significant change in the environment at Site 819. The planktonic foraminiferal d18O record suggests that environmental change occurred prior to the formation of the hiatus (i.e., near the Brunhes/Matuyama [B/M] boundary). The interval between the B/M boundary and the hiatus represents a transitional period between two different patterns of ocean circulation. Throughout most of the lower part of the sequence, Site 819 was at a shallow-water depth and local oceanographic conditions were dominated by sluggish Subtropical Central Water (SCW) flow. However, near the B/M boundary, ocean circulation patterns intensified, reflecting a worldwide change in paleoenvironment. Enhanced ocean circulation patterns were possibly aided by tectonic subsidence. During this period Site 819 became progressively more under the influence of Antarctic Intermediate Water (AAIW), than SCW. In the upper part of the sequence at Hole 819 A, we see a continuation of the pattern of oceanographic reorganization suggested during stages 21 through 14. Intensification of the subsurface oceanographic circulation was also accompanied by the progressive wedging southward of surface waters associated with the East Australian Current (EAC). The change in the nature of the records in the lower and upper parts of the sequence at Site 819 are thought to reflect perturbations by the orbital eccentricity cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution multi-proxy study of core MD99-2286 reveals a highly variable hydrographic environment in the Skagerrak from 9300 cal. yr BP to the present. The study includes foraminiferal faunas, stable isotopes and sedimentary parameters, as well as temperature and salinity reconstructions of a ca. 29 m long radiocarbon-dated core record. The multivariate technique fuzzy c-means was applied to the foraminiferal counts, and it was extremely valuable in defining subtle heterogeneities in the foraminiferal fauna data corresponding to hydrographic changes. The major mid-Holocene (Littorina) transgression, led to flooding of large former land areas in the North Sea, the opening of the English Channel and Danish straits and initiation of the modern circulation system. This is reflected by fluctuating C/N values and an explosive bloom of Hyalinea balthica. A slight indication of ameliorated conditions between 8000-5750 cal. yr BP is related to the Holocene Thermal Maximum. A subsequent increase in fresh water/Baltic water influence between 5750-4350 cal. yr BP is reflected by dominance of Bulimina marginata and depleted d18O-values. The Neoglacial cooling (after 4350 cal. yr BP) is seen in the Skagerrak as enhanced turbidity, increasing TOC-values and short-term changes in an overall Cassidulina laevigata dominated fauna suggesting a prevailing influence of Atlantic waters. This is in agreement with increased strength of westerly winds, as recorded for this period. The last 2000 years were also dominated by Atlantic Water conditions with generally abundant nutrient supply. However, during warm periods, particularly the Medieval Warm Period and the modern warming, the area was subject to a restriction in the supply of nutrients and/or the nutrient supply had a more refractory character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present grain-size distributions of the terrigenous fraction of two sediment cores from the southeast Levantine Sea (SL112) and the northern Aegean Sea (SL148), spanning the time interval from the late glacial to the present. End-member modelling of the grain-size distribution allows discriminating between aeolian and fluvial transport of the sediments and helps to infer palaeoenvironmental conditions in the source areas. Sedimentary and depositional processes during the late glacial and Holocene were controlled by climatic variations of both the northern high latitudes and the African climate system. The sedimentation at site SL112 off Israel is dominated by the suspension load of the River Nile and aeolian dust from the Sahara. Variations in grain size reflect the early to mid- Holocene climate transition from the African Humid Period to recent arid conditions. This climate change was gradual, in contrast to the abrupt humidity change documented inWestern Saharan records. This implies a successive decrease in Nile river sediment supply due to a step-wise aridification of the headwaters. The grain-size data of SL112 show a humidity maximum at 5 kyr BP coincident with a regionally-restricted wet phase in the Levantine Sea. The sediments at the North Aegean site SL148 consist of riverine particles and low amounts of aeolian dust, probably derived from South European sources and with probably minor Saharan influence. The sedimentation processes are controlled by climate conditions being characterized by enhanced deposition of dust during the cold and dry glacial period and by decreased aeolian influx during the temperate and humid Holocene.