992 resultados para 172-1060A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Color variations were interpreted in paleoceanographic terms for the late Pliocene-Pleistocene sediments recovered by ODP Leg 172 on deep-sea drifts at Blake-Bahama Outer Ridge and northeastern Bermuda Rise. The color-derived parameters used in interpretation included predicted carbonate content, terrigenous fluxes, and hematite content. Abundance of Upper Carboniferous spores indicates that the hematite is probably derived from the Permo-Carboniferous red beds of the Canadian Maritimes. In the last 800 kyr sedimentation pattern changes on the Blake-Bahama Outer Ridge were determined by the sediment delivery to the deep basin as well as circulation changes. Sediment delivery increased during glacials (especially during the last 500 kyr and particularly since Stage 6). A fundamental change in the thermohaline circulation occurred at about 500 ka corresponding to the end of the Mid-Pleistocene Transition period at the onset of the predominant 100-kyr climate cyclicity. Sedimentation related to WBUC had intensified at that time and had become more focused at depths below 3000 m. Changes in hematite content and sedimentation rate show a pulse of sediment via the St. Lawrence outlet at the Pliocene-Pleistocene boundary suggesting that a likely change in the hydrography/physiography of the Laurentide Ice Sheet could have been involved in the climatic and ocean circulation changes at that time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data report describes the results of post-Leg 172 sampling of Sites 1054, 1055, and 1063 for two purposes: to investigate the climatic significance of red-colored intervals in the hemipelagic sediments cored during Leg 172 and to better understand the stratigraphy and chronology of Carolina Slope Sites 1054 and 1055. Gravity cores collected from the Carolina Slope on site survey cruise Knorr 140/2 show very high rates of sedimentation during the Holocene and lower rates during the last glacial maximum (LGM). Because of the high rates, many of the sediments in the recovered cores never reached the LGM. In other cores, it is possible that deglacial oscillations have been mistaken for the LGM. Although radiocarbon dating could solve that problem, some of the gravity cores are at or very close to the Ocean Drilling Program (ODP) sites, and it is useful to compare the isotope stratigraphies among them before proceeding with dating. Furthermore, some of the site survey cores have red-colored intervals and others do not, even though there is some indication they are time equivalent. Either the stratigraphy is wrong, diagenesis has affected the color of the sediment, or red sediment is carried to some sites but not to others that differ in depth by only a few hundred meters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflectance spectra collected during ODP Leg 172 were used in concert with solid phase iron chemistry, carbonate content, and organic carbon content measurements to evaluate the agents responsible for setting the color in sediments. Factor analysis has proved a valuable and rapid technique to detect the local and regional primary factors that influence sediment color. On the western North Atlantic drifts, sediment color is the result of primary mineralogy as well as diagenetic changes. Sediment lightness is controlled by the carbonate content while the hue is primarily due to the presence of hematite and Fe2+/Fe3+ changes in clay minerals. Hematite, most likely derived from the Permo-Carboniferous red beds of the Canadian Maritimes, is differentially preserved at various sites due to differences in reductive diagenesis and dilution by other sedimentary components. Various intensities for diagenesis result from changes in organic carbon content, sedimentation rates, and H2S production via anaerobic methane oxidation. Iron monosulfides occur extensively at all high sedimentation sites especially in glacial periods suggesting increased high terrigenous flux and/or increased reactive iron flux in glacials.

Relevância:

20.00% 20.00%

Publicador: