986 resultados para 136


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of a sediment/basement contact using seismic reflection recordings has proven to be extremely difficult in wide areas of the North Pacific Ocean owing to the presence of massive, highly reflective chert layers within the sediment column. Leg 136 of the Ocean Drilling Program recovered coherent pieces of chert of sufficient size for the first comprehensive laboratory measurements of the seismic properties of this material. Compressional-wave velocities of six samples at 40-MPa confining pressure averaged 5.33 km/s, whereas shear-wave velocities at the same pressure averaged 3.48 km/s. Velocities were independent of porosity, which ranged from 5% to 13%, suggesting that pores within the samples were mostly high aspect ratio vugs as opposed to low aspect ratio cracks. Back-scattered electron images made with a scanning electron microscope confirmed this observation. Acoustic impedances were calculated for the chert samples and from shipboard measurements of the red clay sediment overlying the chert layers. An extremely large compressional-wave reflection coefficient (0.73) characterized the interface between the two lithologies. A synthetic seismogram was calculated using chert and typical pelagic carbonate properties to illustrate the influence of chert layers on a marine seismic-reflection section. Compressional-wave to shear-wave velocity ratios of the chert samples (Vp/Vs =1.53) are close to that of single-crystal quartz in spite of variable porosity. Shear-wave reflection coefficients are estimated to be approximately 0.94. A compressional-wave reflection coefficient for a basement/sediment (carbonate) interface is estimated to be approximately 0.50, significantly less than that of sediment/chert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

40Ar-39Ar incremental heating experiments on a relatively unaltered basalt from Site 843 yield a crystallization age of 110 ± 2 Ma for the central Pacific Ocean igneous basement near Hawaii. Previous estimates of the age of the basement inferred by indirect methods and from radiometric dates of the South Hawaiian Seamounts are too young by 20-30 m.y. Phyllosilicate alteration minerals from veins in the Site 843 basalts define a Rb/Sr isochron with an age of 94.5 ± 0.5 Ma. The isochron records the last equilibration of the phyllosilicate minerals with a hydrothermal fluid at about 16 m.y. after the formation of the igneous basement. The last event recorded by calcite veins is the sealing of the crust by a sufficient thickness of sediment to impede the free circulation of seawater into the crust. The chemistry of the alteration minerals indicates the rare earth elements in the hydrothermal solutions were derived from alteration of the basalts and, furthermore, were transported in solution as metal species and carbonate complexes. Calcite with approximately seawater 87Sr/86Sr, but Sr contents too low to precipitate directly from seawater, is suggested to have formed at a late stage in the alteration history of the crust by the reaction of seawater with calcite precipitated earlier from basalt-dominated hydrothermal fluids.