951 resultados para 120110 Algebra lineal
Resumo:
Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.
Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.
Resumo:
In this thesis we are concerned with finding representations of the algebra of SU(3) vector and axial-vector charge densities at infinite momentum (the "current algebra") to describe the mesons, idealizing the real continua of multiparticle states as a series of discrete resonances of zero width. Such representations would describe the masses and quantum numbers of the mesons, the shapes of their Regge trajectories, their electromagnetic and weak form factors, and (approximately, through the PCAC hypothesis) pion emission or absorption amplitudes.
We assume that the mesons have internal degrees of freedom equivalent to being made of two quarks (one an antiquark) and look for models in which the mass is SU(3)-independent and the current is a sum of contributions from the individual quarks. Requiring that the current algebra, as well as conditions of relativistic invariance, be satisfied turns out to be very restrictive, and, in fact, no model has been found which satisfies all requirements and gives a reasonable mass spectrum. We show that using more general mass and current operators but keeping the same internal degrees of freedom will not make the problem any more solvable. In particular, in order for any two-quark solution to exist it must be possible to solve the "factorized SU(2) problem," in which the currents are isospin currents and are carried by only one of the component quarks (as in the K meson and its excited states).
In the free-quark model the currents at infinite momentum are found using a manifestly covariant formalism and are shown to satisfy the current algebra, but the mass spectrum is unrealistic. We then consider a pair of quarks bound by a potential, finding the current as a power series in 1/m where m is the quark mass. Here it is found impossible to satisfy the algebra and relativistic invariance with the type of potential tried, because the current contributions from the two quarks do not commute with each other to order 1/m3. However, it may be possible to solve the factorized SU(2) problem with this model.
The factorized problem can be solved exactly in the case where all mesons have the same mass, using a covariant formulation in terms of an internal Lorentz group. For a more realistic, nondegenerate mass there is difficulty in covariantly solving even the factorized problem; one model is described which almost works but appears to require particles of spacelike 4-momentum, which seem unphysical.
Although the search for a completely satisfactory model has been unsuccessful, the techniques used here might eventually reveal a working model. There is also a possibility of satisfying a weaker form of the current algebra with existing models.
Resumo:
Este libro trata de explicar con claridad y sencillez la forma canónica de Kronecker de haces de matrices para la relación de equivalencia estricta. El tema es importante para los ingenieros, físicos, químicos, economistas y otros científicos que estudian sistemas lineales con control, por lo que una introducción asequible y rigurosa se echa de menos. También esperamos que el libro sea de utilidad para los matemáticos en un segundo curso de álgebra lineal como complemento natural del estudio de la forma canónica de Jordan. La forma canónica de Kronecker es llamada igualmente de Weierstrass-Kronecker, ya que Weierstrass desarrolla la teoría de los divisores elementales y Kronecker la de los índices minimales. Desde un punto de vista epistemológico e histórico deben relacionarse estas teorías con el estudio geométrico de los haces de cónicas y cuádricas para la formación del estudiante de matemáticas. Este libro no intenta establecer estas conexiones. Al lector que desee proseguir en los precedentes históricos le recomendamos el libro sobre historia de las matemáticas de Bourbaki y también artículos de Robert Thompson, Frank Uhlig y otros en la revista Linear Algebra and Its Applications en los años 1980.
Resumo:
[ES] La necesidad de gestionar y repartir eficazmente los recursos escasos entre las diferentes operaciones de las empresas, hacen que éstas recurran a aplicar técnicas de la Investigación de Operaciones. Éste es el caso de los centros de llamadas, un sector emergente y dinámico que se encuentra en constante desarrollo. En este sector, la administración del trabajo requiere de técnicas predictivas para determinar el número de trabajadores adecuado y así evitar en la medida de lo posible tanto el exceso como la escasez del mismo. Este trabajo se centrará en el estudio del centro de llamadas de emergencias 112 de Andalucía. Partiendo de los datos estadísticos del número medio de llamadas que se realiza en cada franja horaria, facilitados por la Junta de esta Comunidad Autónoma, formularemos y modelizaremos el problema aplicando la Programación Lineal. Posteriormente, lo resolveremos con dos programas de software, con la finalidad de obtener una distribución óptima de agentes que minimice el coste salarial, ya que supone un 65% del gasto de explotación total. Finalmente, mediante la teoría de colas, observaremos los tiempos de espera en cola y calcularemos el número objetivo de agentes que permita no sólo minimizar el coste salarial sino mejorar la calidad de servicio teniendo unos tiempos de espera razonables.