985 resultados para 118-734D


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfide mineralogy, sulfur contents, and sulfur isotopic compositions were determined for samples from the 500-m gabbroic section of Ocean Drilling Program Hole 735B in the southwest Indian Ocean. Igneous sulfides (pyrrhotite, chalcopyrite, pentlandite, and troilite) formed by accumulation of immiscible sulfide droplets and crystallization from intercumulus liquids. Primary sulfur contents average around 600 ppm, with a mean sulfide d34S value near 0 per mil, similar to the isotopic composition of sulfur in mid-ocean ridge basalt glass. Rocks from a 48-m interval of oxide gabbros have much higher sulfur contents (1090-2530 ppm S) due to the increased solubility of sulfur in Fe-rich melts. Rocks that were locally affected by early dynamothermal metamorphism (e.g., the upper 40 m of the core) have lost sulfur, averaging only 90 ppm S. Samples from the upper 200 m of the core, which underwent subsequent hydrothermal alteration, also lost sulfur and contain an average of 300 ppm S. Monosulfide minerals in some of the latter have elevated d34S values (up to +6.9 per mil), suggesting local incorporation of seawater-derived sulfur. Secondary sulfides (pyrrhotite, chalcopyrite, pentlandite, troilite, and pyrite) are ubiquitous in trace amounts throughout the core, particularly in altered olivine and in green amphibole. Pyrite also locally replaces igneous pyrrhotite. Rocks containing secondary pyrite associated with late low-temperature smectitic alteration have low d34S values for pyrite sulfur (to - 16.6 per mil). These low values are attributed to isotopic fractionation produced during partial oxidation of igneous sulfides by cold seawater. The rocks contain small amounts of soluble sulfate (6% of total S), which is composed of variable proportions of seawater sulfate and oxidized igneous sulfur. The ultimate effect of secondary processes on layer 3 gabbros is a loss of sulfur to hydrothermal fluids, with little or no net change in d34S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo analiza el fenómeno intertextual de la ?cita? en Petronio, Sat. 118, donde el poeta de la obra, Eumolpo, expone su particular ?ars poetica?. En este discurso, Eumolpo cita los nombres de Homero, Virgilio y Horacio, al tiempo que cita el primer verso de la Oda 3.1 del Venusino, lo que evidencia que el poetastro tiene muy en cuenta la figura horaciana. El análisis de las citas en este pasaje se relaciona con que Petronio es un autor que alude constantemente, pero que cita muy rara vez, por lo que, cuando lo hace, se debe prestar mucha atención

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo analiza el fenómeno intertextual de la ?cita? en Petronio, Sat. 118, donde el poeta de la obra, Eumolpo, expone su particular ?ars poetica?. En este discurso, Eumolpo cita los nombres de Homero, Virgilio y Horacio, al tiempo que cita el primer verso de la Oda 3.1 del Venusino, lo que evidencia que el poetastro tiene muy en cuenta la figura horaciana. El análisis de las citas en este pasaje se relaciona con que Petronio es un autor que alude constantemente, pero que cita muy rara vez, por lo que, cuando lo hace, se debe prestar mucha atención

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo analiza el fenómeno intertextual de la ?cita? en Petronio, Sat. 118, donde el poeta de la obra, Eumolpo, expone su particular ?ars poetica?. En este discurso, Eumolpo cita los nombres de Homero, Virgilio y Horacio, al tiempo que cita el primer verso de la Oda 3.1 del Venusino, lo que evidencia que el poetastro tiene muy en cuenta la figura horaciana. El análisis de las citas en este pasaje se relaciona con que Petronio es un autor que alude constantemente, pero que cita muy rara vez, por lo que, cuando lo hace, se debe prestar mucha atención

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.