922 resultados para 1113 Ophthalmology and Optometry
Resumo:
Purpose. To characterize the changes occurring in choroidal thickness (ChT) across the posterior pole during accommodation using enhanced-depth imaging optical coherence tomography (OCT). Methods. Forty participants (mean age 21 ± 2 years) had measures of ChT and ocular biometry taken during accommodation to 0, 3, and 6 diopter (D) stimuli, with the Spectralis OCT and Lenstar biometer. A Badal optometer and cold mirror system was mounted on both instruments, allowing measurement collection while subjects viewed an external fixation target at varying accommodative demands. Results. The choroid exhibited significant thinning during accommodation to the 6 D stimulus in both subfoveal (mean change, −5 ± 7 μm) and parafoveal regions (P < 0.001). The magnitude of these changes varied by parafoveal meridian, with the largest changes seen in the temporal (−9 ± 12 μm) and inferotemporal (−8 ± 8 μm) meridians (P < 0.001). Axial length increased with accommodation (mean change, +5 ± 11 μm at 3 D, +14 ± 13 μm at 6 D), and these changes were weakly negatively associated with the choroidal changes (r2 = 0.114, P < 0.05). Conclusions. A small, but significant thinning of the choroid was observed at the 6 D accommodation demand, which was greatest in the temporal and inferotemporal parafoveal choroid, and increased with increasing eccentricity from the fovea. The regional variation in the parafoveal thinning corresponds to the distribution of the nonvascular smooth muscle within the uvea, which may implicate these cells as the potential mechanism by which the choroid thins during accommodation.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified using four metrics, but the spectral sensitivity of only one is known; here we determine the other three. To optimize the human PIPR measurement, we determine the protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer. - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR to a 1s pulse and fitted with Vitamin A1 nomogram (λmax = 482nm). - Experiment 2: The PLR was measured as a function of three stimulus durations (1s, 10s, 30s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465nm) and one with low (637nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately describes the spectral sensitivity of all four PIPR metrics. The PIPR amplitude was largest with 1s short wavelength pulses (≥ 12.8 log quanta.cm-2.s-1). The plateau and 6s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.0±48.0s (mean±SD) for 1s pulses and 180.1±106.2s for 30s pulses (465nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of the intrinsic melanopsin photoresponse. To measure progressive changes in melanopsin function in disease, we recommend that the PIPR be measured using short duration pulses (e.g., ≤ 1s) with high melanopsin excitation and analyzed with plateau and/or 6s metrics. Our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified in the literature by four metrics. The spectral sensitivity of only one metric is known and this study quantifies the other three. To optimize the measurement of the PIPR in humans, we also determine the stimulus protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer (35.6° diameter stimulus). - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR (n = 2 participants) to a 1 s pulse at five wavelengths (409-592nm) and fitted with Vitamin A nomogram (ƛmax = 482 nm). - Experiment 2: The PLR was measured in five healthy participants [29 to 42 years (mean = 32.6 years)] as a function of three stimulus durations (1 s, 10 s, 30 s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465 nm) and one with low (637 nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately described the spectral sensitivity derived from all four PIPR metrics. The largest PIPR amplitude was observed with 1 s short wavelength pulses (retinal irradiance ≥ 12.8 log quanta.cm-2.s-1). Of the 4 PIPR metrics, the plateau and 6 s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.4 ± 48.0 s (mean ± SD) for 1 s pulses and 180.1 ± 106.2 s for 30 s pulses (465 nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of intrinsic melanopsin retinal ganglion cell function. To measure progressive changes in melanopsin function in disease, we recommend that the intrinsic melanopsin response should be measured using a 1 s pulse with high melanopsin excitation and the PIPR should be analyzed with the plateau and/or 6 s metrics. That the PIPR can have a sustained constriction for as long as 3 minutes, our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
PURPOSE: In vivo corneal confocal microscopy (CCM) is increasingly used as a surrogate endpoint in studies of diabetic polyneuropathy (DPN). However, it is not clear whether imaging the central cornea provides optimal diagnostic utility for DPN. Therefore, we compared nerve morphology in the central cornea and the inferior whorl, a more distal and densely innervated area located inferior and nasal to the central cornea. METHODS: A total of 53 subjects with type 1/type 2 diabetes and 15 age-matched control subjects underwent detailed assessment of neuropathic symptoms (NPS), deficits (neuropathy disability score [NDS]), quantitative sensory testing (vibration perception threshold [VPT], cold and warm threshold [CT/WT], and cold- and heat-induced pain [CIP/HIP]), and electrophysiology (sural and peroneal nerve conduction velocity [SSNCV/PMNCV], and sural and peroneal nerve amplitude [SSNA/PMNA]) to diagnose patients with (DPN+) and without (DPN-) neuropathy. Corneal nerve fiber density (CNFD) and length (CNFL) in the central cornea, and inferior whorl length (IWL) were quantified. RESULTS: Comparing control subjects to DPN- and DPN+ patients, there was a significant increase in NDS (0 vs. 2.6 ± 2.3 vs. 3.3 ± 2.7, P < 0.01), VPT (V; 5.4 ± 3.0 vs. 10.6 ± 10.3 vs. 17.7 ± 11.8, P < 0.01), WT (°C; 37.7 ± 3.5 vs. 39.1 ± 5.1 vs. 41.7 ± 4.7, P < 0.05), and a significant decrease in SSNCV (m/s; 50.2 ± 5.4 vs. 48.4 ± 5.0 vs. 39.5 ± 10.6, P < 0.05), CNFD (fibers/mm2; 37.8 ± 4.9 vs. 29.7 ± 7.7 vs. 27.1 ± 9.9, P < 0.01), CNFL (mm/mm2; 27.5 ± 3.6 vs. 24.4 ± 7.8 vs. 20.7 ± 7.1, P < 0.01), and IWL (mm/mm2; 35.1 ± 6.5 vs. 26.2 ± 10.5 vs. 23.6 ± 11.4, P < 0.05). For the diagnosis of DPN, CNFD, CNFL, and IWL achieved an area under the curve (AUC) of 0.75, 0.74, and 0.70, respectively, and a combination of IWL-CNFD achieved an AUC of 0.76. CONCLUSIONS: The parameters of CNFD, CNFL, and IWL have a comparable ability to diagnose patients with DPN. However, IWL detects an abnormality even in patients without DPN. Combining IWL with CNFD may improve the diagnostic performance of CCM.
Resumo:
PURPOSE. To assess the prevalence of age-related macular degeneration (AMD) in a rural population in Northern India. METHODS. In a pilot feasibility study, 1443 people (median age, 60 years; 52% women), were identified from enumeration of the 50+ age group in 11 randomly sampled villages from a rural, periurban district of Haryana, Northern India. Of those identified, 87% attended an eye examination that included digital fundus photography. Fundus images were graded at a single reading center using definitions from the Wisconsin Age-Related Maculopathy Grading System. RESULTS. Fundus photographs were available for 1101 participants. Overall, 28.8% of participants had ungradable fundus images due to cataract. Including all with ungradable images in the denominator, the prevalence of soft drusen was 34.0% (95% confidence interval [CI] 26.1–42.9); of soft indistinct drusen, 2.2% (95% CI, 1.1–4.4); and of pigmentary irregularities, 10.8% (95% CI, 7.1–16.1). There were 15 (1.4%) cases of late-stage AMD (95% CI, 0.8–2.3) with the prevalence rising from 0.4% in the 50- to 59-year age range to 4.6% in those aged 70 years or older. CONCLUSIONS. Drusen and pigmentary irregularities are common among the rural northern Indian population. The prevalence of late AMD is similar to that encountered in Western settings and is likely to contribute significantly to the burden of vision loss in older people in the developing world.
Resumo:
PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.