922 resultados para 110316 Pathology
Resumo:
PURPOSE:
The aim of the study was to compare the pre-operative metabolic tumour length on FDG PET/CT with the resected pathological specimen in patients with oesophageal cancer.
METHODS:
All patients diagnosed with oesophageal carcinoma who had undergone staging PET/CT imaging between the period of June 2002 and May 2008 who were then suitable for curative surgery, either with or without neo-adjuvant chemotherapy, were included in this study. Metabolic tumour length was assessed using both visual analysis and a maximum standardised uptake value (SUV(max)) cutoff of 2.5.
RESULTS:
Thirty-nine patients proceeded directly to curative surgical resection, whereas 48 patients received neo-adjuvant chemotherapy, followed by curative surgery. The 95% limits of agreement in the surgical arm were more accurate when the metabolic tumour length was visually assessed with a mean difference of -0.05 cm (SD 2.16 cm) compared to a mean difference of +2.42 cm (SD 3.46 cm) when assessed with an SUV(max) cutoff of 2.5. In the neo-adjuvant group, the 95% limits of agreement were once again more accurate when assessed visually with a mean difference of -0.6 cm (SD 1.84 cm) compared to a mean difference of +1.58 cm (SD 3.1 cm) when assessed with an SUV(max) cutoff of 2.5.
CONCLUSION:
This study confirms the high accuracy of PET/CT in measuring gross target volume (GTV) length. A visual method for GTV length measurement was demonstrated to be superior and more accurate than when using an SUV(max) cutoff of 2.5. This has the potential of reducing the planning target volume with dose escalation to the tumour with a corresponding reduction in normal tissue complication probability.
Resumo:
A major goal of molecular biology is to elucidate the mechanisms underlying cancer development and progression in order to achieve early detection, better diagnosis and staging and novel preventive and therapeutic strategies. We feel that an understanding of Runt-related transcription factor 3 (RUNX3)-regulated biological pathways will directly impact our knowledge of these areas of human carcinogenesis. The RUNX3 transcription factor is a downstream effector of the transforming growth factor-beta (TGF-beta) signaling pathway, and has a critical role in the regulation of cell proliferation and cell death by apoptosis, and in angiogenesis, cell adhesion and invasion. We previously identified RUNX3 as a major gastric tumor suppressor by establishing a causal relationship between loss of function and gastric carcinogenesis. More recently, we showed that RUNX3 functions as a bona fide initiator of colonic carcinogenesis by linking the Wnt oncogenic and TGF-beta tumor suppressive pathways. Apart from gastric and colorectal cancers. a multitude of epithelial cancers exhibit inactivation of RUNX3, thereby making it a putative tumor suppressor in human neoplasia. This review highlights our current understanding of the molecular mechanisms of RUNX3 inactivation in the context of cancer development and progression. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims/hypothesis
Methylglyoxal (MG) is an important precursor for AGEs. Normally, MG is detoxified by the glyoxalase (GLO) enzyme system (including component enzymes GLO1 and GLO2). Enhanced glycolytic metabolism in many cells during diabetes may overpower detoxification capacity and lead to AGE-related pathology. Using a transgenic rat model that overexpresses GLO1, we investigated if this enzyme can inhibit retinal AGE formation and prevent key lesions of diabetic retinopathy.
Methods
Transgenic rats were developed by overexpression of full length GLO1. Diabetes was induced in wild-type (WT) and GLO1 rats and the animals were killed after 12 or 24 weeks of hyperglycaemia. N e-(Carboxyethyl)lysine (CEL), N e-(carboxymethyl)lysine (CML) and MG-derived-hydroimidazalone-1 (MG-H1) were determined by immunohistochemistry and by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MSMS). Müller glia dysfunction was determined by glial fibrillary acidic protein (GFAP) immunoreactivity and by spatial localisation of the potassium channel Kir4.1. Acellular capillaries were quantified in retinal flat mounts.
Results
GLO1 overexpression prevented CEL and MG-H1 accumulation in the diabetic retina when compared with WT diabetic counterparts (p?<?0.01). Diabetes-related increases in Müller glial GFAP levels and loss of Kir4.1 at the vascular end-feet were significantly prevented by GLO1 overexpression (p?<?0.05) at both 12- and 24-week time points. GLO1 diabetic animals showed fewer acellular capillaries than WT diabetic animals (p?<?0.001) at 24 weeks’ diabetes.
Conclusions/interpretation
Detoxification of MG reduces AGE adduct accumulation, which, in turn, can prevent formation of key retinal neuroglial and vascular lesions as diabetes progresses. MG-derived AGEs play an important role in diabetic retinopathy.
Resumo:
Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.
Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.
Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
Resumo:
Six veal calves were medicated with clenbuterol at 20 mu g kg bodyweightl day(-1) for 42 days before they were slaughtered, to evaluate the lesions and residues in target organs. Compared with six unmedicated calves the most noticeable changes were tracheal dilatation, decreased uterine weight, slight mucous hypersecretion in the uterus and vagina and depletion of liver glycogen. The highest concentrations of clenbuterol (62 to 128 ng/g(-1)) were recorded in the choroid/retina, and the aqueous humour had the lowest concentration (0.5 to 2.4 ng ml(-1)). The residue concentrations were higher than the maximum residue level set for clenbuterol (0.5 ng g(-1))
Resumo:
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human–computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eyetracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered.