973 resultados para 1,2,3-substituted cyclopropane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polychlorinated naphthalenes are environmentally relevant compounds that are measured in biota at concentrations in the μg/kg lipid range. Despite their widespread occurrence, literature data on the accumulation and effects of these compounds in aquatic ecosystems are sparsely available. The goal of this study was to gain insights into the biomagnification and effects of 1,2,3,5,7-pentachloronaphthalene (PeCN52) in an experimental food chain consisting of benthic worms and juvenile rainbow trout. Worms were contaminated with PeCN52 by passive dosing from polydimethylsiloxane silicone. The contaminated worms were then used to feed the juvenile rainbow trout at 0.12, 0.25 or 0.50 μg/g fish wet weight/day, and the resulting internal whole-body concentrations of the individual fish were linked to biological responses. A possible involvement of the cellular detoxification system was explored by measuring PeCN52-induced expression of the phase I biotransformation enzyme gene cyp1a1 and the ABC transporter gene abcb1a. At the end of the 28-day study, biomagnification factors were similar for all dietary intake levels with values between 0.5 and 0.7 kg lipid(fish)/kg lipid(worm). The average uptake efficiency of 60% indicated that a high amount of PeCN52 was transferred from the worms to the fish. Internal concentrations of up to 175 mg/kg fish lipid in the highest treatment level did not result in effects on survival, behavior, or growth of the juvenile trout, but were associated with the induction of phase I metabolism which was evident from the significant up-regulation of cyp1a1 expression in the liver. In contrast, no changes were seen in abcb1a transcript levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

auctore Joan. Feldmayr

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decrement in dopamine levels exceeds the loss of dopaminergic neurons in Parkinson’s disease (PD) patients and experimental models of PD. This discrepancy is poorly understood and may represent an important event in the pathogenesis of PD. Herein, we report that the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure of PC12 cells to either peroxynitrite or 1-methyl-4-phenylpyridiniun ion (MPP+). Nitration of TH also occurs in mouse striatum after MPTP administration. Nitration of tyrosine residues in TH results in loss of enzymatic activity. In the mouse striatum, tyrosine nitration-mediated loss in TH activity parallels the decline in dopamine levels whereas the levels of TH protein remain unchanged for the first 6 hr post MPTP injection. Striatal TH was not nitrated in mice overexpressing copper/zinc superoxide dismutase after MPTP administration, supporting a critical role for superoxide in TH tyrosine nitration. These results indicate that tyrosine nitration-induced TH inactivation and consequently dopamine synthesis failure, represents an early and thus far unidentified biochemical event in MPTP neurotoxic process. The resemblance of the MPTP model with PD suggests that a similar phenomenon may occur in PD, influencing the severity of parkisonian symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by European Research Council. Grant Number: 339367 UK Biotechnology and Biological Sciences Research Council. Grant Number: K015508/1 The Wellcome Trust. Grant Number: 094476 EPSRC Acknowledgements This work was supported by the European Research Council (339367), UK Biotechnology and Biological Sciences Research Council (K015508/1), The Wellcome Trust (TripleTOF 5600 mass spectrometer (094476), the MALDI TOF-TOF Analyser (079272AIA), 700 NMR) and the EPSRC UK National Mass Spectrometry Facility at Swansea University. J.H.N. is a Royal Society Wolfson Merit Award Holder and 1000 talent scholar at Sichuan University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration and a decrease in Bcl-2. These changes parallel MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking Bax are significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that Bax plays a critical role in the MPTP neurotoxic process and suggests that targeting Bax may provide protective benefit in the treatment of Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson disease (PD). To study the role of NO radical in MPTP-induced neurotoxicity, we injected MPTP into mice in which nitric oxide synthase (NOS) was inhibited by 7-nitroindazole (7-NI) in a time- and dose-dependent fashion. 7-NI dramatically protected MPTP-injected mice against indices of severe injury to the nigrostriatal dopaminergic pathway, including reduction in striatal dopamine contents, decreases in numbers of nigral tyrosine hydroxylase-positive neurons, and numerous silver-stained degenerating nigral neurons. The resistance of 7-NI-injected mice to MPTP is not due to alterations in striatal pharmacokinetics or content of 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP. To study specifically the role of neuronal NOS (nNOS), MPTP was administered to mutant mice lacking the nNOS gene. Mutant mice are significantly more resistant to MPTP-induced neurotoxicity compared with wild-type littermates. These results indicate that neuronally derived NO mediates, in part, MPTP-induced neurotoxicity. The similarity between the MPTP model and PD raises the possibility that NO may play a significant role in the etiology of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The levels in Sn-129 populated from the beta(-) decay of In-129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1/2(+) state and the 3/2(+) ground state in 129Sn are expected to have configurations dominated by the neutron s(1/2) (l = 0) and d(3/2) (l = 2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we havemeasured the half-life of the 1/2(+) 315.3-keV state, T-1/2 = 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T-1/2 value by the renormalization of the M1 effective operator for neutron holes.